Software Project
Documentation

llAM P”

Ant-Based Multi-Agent Project-Scheduling
Winter Term 09/10

Supervisor
Prof. Jorg Homberger

Project Team
Sandro DeGiorgi
Frank Erzfeld
Matthias Huber
Jhumi Kanungo
Annemarie MeiRner
Eduard Tudenhofner

1 [aYddoTe (¥ Lot o] o IO TP PPPPPPPTRRRRPIR 6
1.1 (0] o] =T o IO PPPPPPURRPIOE 7
1.1.1 CaSH VAlUE ...ttt e st e e s ettt e e s et e e e s s bt e e e e e bt raee s aaneeas 7
1.1.2 RESOUICE CONSTIAINTS ...ttt e e e e e e e e e e e et e ettt ee e b e e et s s e e e e e e eeeeaeeeeenee 8
1.1.3 Problem INStanCes DY FINKueiiiiieiiiiieite et e e e e e e e e e e e e e e e aaaaaaeeeeees 8

1.2 [CToT- | PP PP PP 8
1.3 YN o] o] oY= ol o TP SRR 9
13.1 Explanation pheromone MatriXc..eeieeiiiiieiiiiiie et e e 9

1.4 o o) [Tt =T] o o PRSP 11

2 R GUITEIMENTS .. ettt e e et et e s e e e e tab s e e e e etaa s e e e e et b s eeasataa e eeeenssanseeeeetsaanseeenerannnns 12
2.1 BUSINESS REGUITEMENTS ...ttt e e e e e e e ettt ettt e e bbb e s s e e e e e e e eeeeeeeeeeeeeeeeesennnnnnnaaaees 12
2.1.1 FEASIDIE SCHEAUIE ..o et e e e st e e e eabreee s 12
2.1.2 SOIULTION QUATIEY 1eeeiiiiieee ettt e e e s s be e e e st b e e e ssabaeeessabbbaeesannnes 12
213 Graphical USer INTEITACEei ittt ettt et sbe e e 12
2.14 Benchmarking Capabilitiesuuieiiieiiiieeecc e e e e e e 12

2.2 Technological REQUIFEIMENTSuuiiiiiiiieee e eeeeccciirre e e e e e e e ettt e e e e e eeeeeeesssatttaraeeeeeeeeeeeesnnnssnennens 12
2.2.1 DiSTHDULEA SYSTEIM coeiiiiii ittt e e e e e e e e e e e e e e e e e e e s s tbbbaaeeeeaaeeeeeeeasnsnssanees 12
2.2.2 [1 o] o o TSP UPPPPRSPPPNY 12
2.2.3 Hardware REQUINTEMENTS........uuiiiiiiieeee e e eeccciree s s saaebrareeeeeeeeeeesasnnnnsnnnnnes 12

3 Solution ConCePt aNd Draft ... e e e e e e e e e e ettt a e e e e e e e e e e e e e e aaabaaaaaaaaaaans 13
3.1 BUSINESS SOIULION EIEMENTS ...ttt e et e s st e e e e be e e e s ennee 13
3.1.1 FEASIDIE SCHEAUIE ..ccoiieeiieieeieee et s e e e s s sbbe e e e sabbaeees 13
3.1.2 SOIULION QUATIEY 1eveiiiiiere ettt e e st e e e s sabe e e e s sabteeeesssbaeeeenabbaeeesannes 13
3.13 Graphical USer INTEITACEeiiieeitee ettt et e et e st e s be e e 13
3.14 Benchmarking Capabilitie@s.........uuueiieiiiieeeccieeeee et e e e e e e e st e e e e e e e e e e e nnnennneees 14

3.2 Technological SOIULION EIEMENTSuiiiiiiie et e e e e e e e e e ettt e e e e e e e e e e eeensenaaanees 14
3.2.1 DiSTrDULEA SYSTEIM ceeiiiiiiiiiieeee et e e e e e e e e e e e e s s s bbbt aeeeeeeeeeseesssnsnnnnnnnees 14
3.2.2 [Y o T4 o o KO PP P PSP PPPOPPPP 14
3.2.3 [T4 1T T OO PP PPTPP 15
3.24 WED SEIVICE FramMEWOTKuuviiiiiiiiieee ittt e e e e sttt e e e e e e e e s s s sttt e e e e e eeeeseessansnnnnnnaees 15

33 BLI=E= T 0T 20 o 1=t o P o U PPPE 15

4 A ol 11 =Tl AU < U PPP PPN 17
4.1 Yo VY Tl Vol Y1 =T (U] T PSR 17
4.1.1 UL Class DI@BIamMS c.ueeeeiiiiieriiieeeeeeeeeeeessseetteeeteeeaeesssssassssssaseaeeeessesssssssssssseaeeeeeesesssssnsnsssssnnes 17
4.1.2 UML SEQUENCE DIABIam ..uuuceiiee e i i e ittt s s s e e e e e e e e e e e e e e e e eeesaeaetbeeebansaanneeseeeseaaaaaes 21

4.2 SYSTEM AICNIEECTUNE ...ttt sttt e e bt e e b b e e st e e e sab e e e bbeeebbeeeabeeesabeeenee 22

5 DLV 2] o] o] aa =T ol =0 V7T e o 0 V=T o S SUPUPRN 23
5.1 Tools and Versions Of USed SOftWArrecc.uvieiiiiiiiiiiee e e s 23
5.2 (0101 LA F =3V (=Y o o PP P PPPUPRRPRPPPNt 24
53 Project ManagemENTcciiiiiiiiiei e e e e e e e e e e e e 24
5.4 VEISION CONTIOL 1.uiiiiieiiiiiiet ettt st bt e e e s st et e s s ab bt e e s saabbeeeesabbaeeesaabbeeeesnabbaeeesnnssees 24
5.5 (0o T o)A 1oYW o U R g (=T=4 -} 4[] o NP PPN 24
5.5.1 Automated builds / AUtOMAated TESTINGccviiiiieecie ettt et ebee e earee e 24

Software Project WS09/10

Software Project WS09/10

5.5.2 APPIICATION SEIVET . et e ettt e e et e e e st e e s e b e e e s snraeeeeaans 24
5.6 ENGDIING The WED ACCESS .eeeiiieiiiieeciiie ettt e e e ettt e e e e e e e e s s st eeeeaeaeeeeasssnnssrsaeeeeeeaeeeeesnnnnnnes 24
6 [o) ¥o] 1Y/ o= TP PT PP 25
6.1 Infrastructure
6.2 FA F= 0T 4 12 SRR
6.2.1 General ANt AlGOTItMuieee e e e e e e e e e aaeaan 25
6.2.2 oY o To T =T aT=T =Y d [o FS U STTRPTP 26
6.2.3 VOtING AIBOITENMS ..t e e e e s st e e e s e e e s snreeeeeeaes 27
6.2.4 Ant Colony Optimization AOC — ADaptation RUIE..........ccuviiiiiiieeee e 29
6.2.5 Improven pheromone MatriX UPAate........cccouuiiiiiiiieeii it e e e e e e e e e e e e aaneaeee s 30
6.2.6 Pheromone mMatriX @XamMPIeoocuiiii ittt e e s e e e rnee s 30
6.3 DI T LU N =Te BV <1 o [PUUUPRN 31
6.3.1 Architecture of the Distributed SySTEMuuiiiiiiii i 31
6.3.2 Description of the service Methodsooeviiiiiiiiiceee e 32
6.3.3 Description of the mediator COMPONENLSuvviiiiiiiiiiceee e 32
6.3.4 Description of the agent COMPONENTS............uviiiiiiii i e e 33
6.4 AABEBNT e e e e e e e et e e ettt e b e 34
6.4.1 SPECITICATION / DESIGN 1eeeeiiiriieeeitieee e ettt e eectte e e e et e e e e rtbaeeeessbbaee e s sbaaeeesssbaeeeesssraeeeesnssaeeesanes 34
6.4.2 TaaT o1 (=T g g V=T ol =Y Lo 1o VU UPRR 36
6.4.3 (1T o] =110 =141 o USROS 38
7 RESUIES .ttt ettt ettt ettt e e s sttt e e e a bttt e e s e bt et e e a b bt e e e e e aa et e e e e b b ee e e e e abt e e e e nabbaeeeeentaeeeennbraeens 42
7.1 Problem J302 @pProach L.ttt e e e e e e e e et e e e e e e e e e e e e abbrbaareeeaaaeeeeannnnnes 43
7.2 Problem J302 approach 2....... i e e st e e e 45
7.3 [0 o] LT o T 1T 0 1 PSURPRN 47
7.4 Problem X35 APProach L. ...ttt e e e e e e e s s st e e e e e e e e e e e e nabtrrarreeeaaaeeeeaaannnes 49
7.5 Problem X35 APPrOach 2......ooeeiiiiiiiiiiiiciieeiiee s e e e e e e e ettt e e e e e e e eeaeaaaaaeaeeeeraeaara——ra————————— 51
8 Performance IMEASUIEMENTSuuiiiiiieeeeeiicciiiii et e e e e e e e e e see e eeeeeeeeeessssaaaaasaeeeeaaaeeeesasassstrneeeeeeaeesesnnnnnnnes 53
8.1 SYSTEM M EASUIEIMENES o tu ittt e et e e et et et e e e e e etaa s e e etataaeseeatastnsseeasssanseeeressnnnseeens 53
8.1.1 CPU ittt ettt ettt e et e e e et e e e —— e e e e e —— et e e et baeee e e bt ete e e baaeeeeabtaeeeeanbraeeeeanraeaenanes 53
8.1.2 ClaSS LOAAINEeeteiiiiiiee ettt ee e ettt e e ettt e e e s bttt e s s ab et e e e ssabeeeeeeaabraeeesenraeeesanns 56
8.1.3 1Y/ 1=] 0 To] o 2SO PP PO UUPTPPPRRTPPPIRY 57
8.1.4 B2 1= o PSP SPTPPPRN 59
8.1.5 SYSEEM INFOrMALION ...eeiiiiiiiii ettt e e e e e s s nree e e e 60
8.2 TIMET M EASUIEIMENTS ..ceiiiiiiiieeiiit ettt e e e e e et e e e e e e e s s e e e e e e e e e e eas s nnrrre e et teeeeesssasnnnnnnneeeeas 61
8.2.1 o] a1 o T4 I o] {o T [=Tot AP PP PP PPPPPPPN 61
8.2.2 RetrieVving ProjeCt CRANEEScccceiiiiiieecceeeeeeeee e e e e e e e e e e e e e e ettt aeeeeeeaaaas 62
8.2.3 UpPdating the ProjECTVIEWuviiiiiiiee ettt e e e e e e e e e e st e e e e e e e e e e e ennnnnsnneeees 63
8.2.4 Updating the NegotiatioNVIEWcciiieieciiiieieee et e et e e e e e e e e e eaaaaeaaeeeas 64
8.2.5 Retrieving proposals for 30 JODSciii it e 65
8.2.6 Retrieving proposals for 120 JODS........cueeeeiiiiiiiiice e e 66
8.2.7 Sending the evaluated points — 30 JODS......ccuiiii i 67
8.2.8 Sending the evaluated points — 120 JODS........ccoiiiiiiiiiiieecerree e ——————- 68
9 (6o} 3Tl (V13T o IO P PRSPPI PPPPPPPP 69
O Y oo =T s o PP PP PP 70
F0.1 SOUICES ..ttt e e e e e e e e e e e e e ettt ettt tet et ae b e e e e e e e e eeeeeaeeeetee et eeaetaesbbnn e e e aaeeeeeeeeeeeeaeeeeeaees 70

Software Project WS09/10

ILLUSTRATIONS

Illustration 1:

Illustration 2:

Illustration 3:

lllustration 4:

Illustration 5:

lllustration 6:

Illustration 7:

lllustration 8:

Illustration 9:

Illustration 10

Illustration 11:

Illustration 12

lllustration 13:

lllustration 14:

Illustration 15

lllustration 16:

Illustration 17

lllustration 18:

lllustration 19:

lllustration 20:

lllustration 21:

lllustration 22:

lllustration 23:

lllustration 24:

Illustration 25

lllustration 26:

lllustration 27:

lllustration 28:

Simplified example of a collaborative project plancccociiiiiiiiiiii e 7
Pheromone-example / ants dealing with an 0bstacleccoccvveiiieiiiie e 9
Pheromone-example / ant arrives at destinationcccceeeoiciieeeeciieee et 10
Pheromone-example / ants returning back hOmecceoiiviiiii e e 10
Pheromone-eXample STEP 4 ..ot e e e e e e e e e e e e e e e e e e a—aaaaaaaaaaaas 10
AENT Class IAEIAM ..eoiiii ittt ettt tbaaeeaaaaeeeeeaannraraaaaes 18
class diagram Of the MEdiator........ciiececcieeee e e e e e e e e arar e e e eaaaeeas 19
Class diagram of the COMMONLAYETuuuiiiiiiiiiee et e e e e e e e e e e e e e e e e eaaaraaaaaaaaaeens 20
UML SEQUENCE DIQGIam . ciuuuiieiiiiiiiiiie e eeeiiiies e e etttiee e e e etaatiseeeeettaia s e s eeattaeseeeaassaseeaessssanseeessssnnseaenes 21
D SYSTEM AICNITECTUIE coeiii ittt e e e e e e e r e e e e e e e e e e e e e s atbbbaaeeeeaaeeeseeensssssaranes 22
INFFASTIUCTUIE .ttt et e ettt e s bt e st e e sa b e e ebbee e bbeeeabbeesabeeesabeeennne 23
: Architecture of the distributed SYStEMuiiiiiiiiiiii e 31
Draft of the mediator cONNECtiON SCrEENceiiuiiiiiieiiiie e 34
Draft of the project SEIECtiON SCrEENuiiiiiiiie e e e a e e e e 34
: Draft of the NegOtiation SCrEENcoiii i e e e e e e e e e aaearaaaees 35
Draft of the reSUI SCrE@N.......eei e e 35
1 JFace in the conteXt Of SWT/ECHPSE...cciiuriii ettt e et e e e ebre e e e e earaeaeeae 37
ProgresSMONItOrDIAlIOZ.......uuuiiiiieiee et e e e e e e e e e e et r e e e e e e e e e e e aanraaaaaaaaaaaeas 37
The mediator CONNECLION SCrEENeiiiiieiiiie et 38
The add/edit dIAlOBUEccvviieei et e e e e s e tbe e e e e bbeeeessbbeeeeenatraeeesennnes 38
L o Yot dY =] (=T d o] g TR o o <T=] o PSR PRRR 39
NEZOTIATION VIBW ettt e e e et s e e e e etbe s e e eeaa e e s e eabaaa e eeaeesananeaanes 40
RESUIE VIBW ..ottt ettt st sat e e sa e sttt e st e s et e ssne e e ssneesaneeenanes 41
CPU 10ad WHEN TN ..cci ittt e e e e e e e e s e et rb e e e e eaeeeeeeeennnnsnnannes 53
: CPU load during a negotiation With 30 JODSuuviiiiiii i 54
CPU load during a negotiation With 120 JODScciiiiiiiiiiiiiiiiiieeeee e e eeeanaaees 55
(0T (o =T L1 Y-S UUUR 56
MeMOry 10ad WHEN Tuiiiiiieee e e e e e e e e aar e e e aaeaeeas 57

file:///C:/Users/Franky/Documents/Studium%20SS09/WS0910/Software%20Project/Doku/Software%20Project%20Documentation.docx%23_Toc251777605

Software Project WS09/10

Illustration 29: Memory load during @ NEGOLIATIONc.euiiiiiiiiiiei e 58
Illustration 30: OVErvieW OVEr thrEadseiiiiiiiiiie ittt e e st e s e ee e s s enreee e e 59
Illustration 31: General system iNfOrMatioNnocuei ittt st e e 60
[USEration 32: JOINING @ PrOJECE .eeeuueiiiiee ittt ee ettt ettt ettt e sab et ettt e e bbe e e bt e e s bt e e sabe e e aabeeeaabeesabbeesbteesabaeesneeas 61
Illustration 33: Retrieving Project ChanGeScooiiiii ittt e e s e e e s s snee e e e 62
Illustration 34: Updating the Project VIEWc.coiieieiiiiiiiie ettt e st e s e ee e s s eanreee e e 63
Illustration 35: Updating the NegotiatioNViEWceiiiiiiiiiiiiiiieee e e s 64
Illustration 36: Retrieving proposals for 30 JODSuiiiiiii i e et e e e e e e e aanes 65
Illustration 37: Retrieving proposals for 120 JODSeiiiiiiie it e e e e e e e e e e e e e e e e nnees 66
Illustration 38: Sending the evaluated POINtS - 30 JODS ..cc.uuiiiiiiiiiiieiee ettt 67
Illustration 39: Sending the evaluated Points - 120 JODSccocuiiiiiiiiiiii et 68

CHARTS

Chart 1: Results of AMP comMpPared t0 FINKcooiiiiiiiiiiiiiieee e e e e e rr e e e e e e e e e e e e snaaabaaaaeeaaaaeens 42
Chart 2: J302 APProach 1 TCV SUMeeueiiiiiiiiiee e e e e ettt e e e e e e e e e e e ettt a e e e e e eeaaeeeeeasassstaassaaaaaeeeseasnssssssaanaaaaaaans 43
Chart 3:J302 Approach 1 TCV AZENT Lueiiiiiiiie ettt e e e e e e e ettt e e e e e e e e e e e eesaabtaaaaeeeaaeeeeeesnsssssasasaaaaaaans 44
Chart 4:J302 ApProach 1 TCV AZENT 2 ...uueiiiiiiei e ettt e e e e e e e e ettt e e e e e e e e e e eeeeesasattaaaseaeaaeeeseesnsssssasasaaaaaaens 44
Chart 5:J302 APProach 2 TCV SUMeeeeeiiiiiiiiee e e e e e ettt e e e e e e e e e e s st tr e e e e e eeeeeaeeasansssssasaaeeaaeesssssnsnsssnnaneeaaaaens 45
Chart 6:J302 Approach 2 TCV AZENT Lueiiiiiiieee ettt e e e e e e e e e st e e e e e e e e e e e eesasattaaaaeeeaaeeesessnsssssssaaeaaaaaaens 46
Chart 7:J302 ApProach 2 TCV AZENT 2 ...uuiiieeeiie e e ettt e e e e e e e e e s ettt ra e e e e e e e e eeeesesassttaaaaeeeaaeessesssssssssaasaaaaaaans 46
Chart 8:JB02 TCV SUIM ...eutieiiieiieete ettt ettt stt et e bt esbe e eateebeeebeeeae e e abe e b e e ebeeease e beesbeeeateenbeenbeenbeeeaseenbeenbeeennes 47
Chart 9:JB02 TCV ABENT 1 ...ttt ettt ettt e sb e e et et e e bt e s at e et e e bt e ebe e eat e e bee bt e eabeenbeenbeeeaeeeaseebeenbeeenees 48
Chart 10: J602 TCV AZENT 2 ...eeiiiiiieeieeeite ettt ettt et e b e bttt e e bt e bt e s e be e bt e bt e s aeeeabe e bt e bt e sabeeabeebeesabesnbeebeenaeas 48
Chart 11: X35 APProach 1 TCV SUMuueiiiiiieieee e e e e ettt e e e e e e e e e s ettttaaeeeeaeeeeeeeassnsssssaaaaeeaaeesssssnnsnsssssanaaaaaaans 49
Chart 12: X35 Approach 1 TCV AZENT 1uuiiiiiiiiei ettt e e e e e e e e e e e e e e e e e e saeeaaaaeeeaaeeessennsssssaaaaaaaaaaans 50
Chart 13: X35 ApProach 1 TCV AZENT 2uuieieiiiee i e ettt e e e e e e e e sttt e e e e e e e e e ee e s anataaaseeeaaaeeessasnnsssssaraneaaaaaans 50
Chart 14: X35 APProach 2 TCV SUMuueiiiiiieiie e e e e e cccciiitte e e e e e e e e e e e s stabtraeeeeaeaeaaeeasanssssssasaeeaaeesssssannssssasanaaaaaaans 51
Chart 15: X35 Approach 2 TCV AZENT 1eviiiiiiiiii ettt e e e e et e e e e e e e e e e e e aataaaaaeeeaaeeeseesassssssasasaaaaaaans 52
Chart 16: X35 ApProach 2 TCV AZENT 2uuvieeiiieee e ettt et e e e e e e e e sttt e e e e e e e e eeeessnnntaaaaaeeeaaeeesassnsssssnnaeeeaaaeens 52

Software Project WS09/10

1 INTRODUCTION

’

As a part of the master course “Software Technology” at the University of Applied Science Stuttgart, the

students have to participate in a software project during their 2" semester.
The following final knowledge and skills will be acquired during the project by each student:

e Knowledge and practical experience of software engineering while developing software in an industry-
like project with real costumers

e Practical knowledge in using software design, version control, documentation, testing, maintenance
and software quality assurance.

e Practical experience of the difficulties of team management and troubleshooting (due to the size of
the project team)

The students were able to choose between two topics. Our team decided to choose the software project
offered by Professor Homberger “Ant-based Multi-Agent System for Collaborative Project Scheduling”.

To understand the purpose and goals of this software project, it is important to understand the fundamental
basics of the topic.

A project is defined as “a collaborative enterprise, frequently involving research or design, that is carefully
planned to achieve a particular aim”’. When working on a project, this project will usually be divided into
smaller subprojects. We will refer to these subprojects as “jobs”.

In a steadily evolving and globalizing business world, projects are no longer carried out by only one single
company. Take for example the building of a house: There might be one company responsible for the planning
and architecture, another company responsible for the bricklaying, yet other companies responsible for
plumbing, electrics, interior design and so on. Obviously, there has to be some sort of cooperation between
these companies because certain tasks in the process cannot begin before others, for instance it is not possible
to do the interior decoration before the house actually exists. It is even possible that one job is being carried
out by two different companies at the same time.

Now let’s take the example to a higher level. In the business world, with all the outsourcing of tasks, several
companies are not only collaborating in a project, but also in the same domain space.

There might be a project collaboratively handled by two companies, furthermore referred to as “agents”. The
project is divided into smaller work packages, the “jobs”. As in the introductory example of the building of a
house, jobs have a specific order in which they have to be performed. It is of course possible that certain jobs
can be performed in parallel, while others depend on each other. For instance, it is possible to layout the bricks
for a house and at the same time install the plumbing — but before you can start painting the walls the electrics
must be installed.

To visualize such a network of dependent jobs, you can for example use GANTT-diagrams or PERT-Charts (see
lllustration 1: Simplified example of a collaborative project plan). When two agents are working on one project,
these jobs are divided amongst the two agents. Since jobs are dependent on each other there has to be some
sort of negotiation on the start times of the jobs between the two agents because the start-times of jobs are
dynamic.

! Oxford English Dictionary

Introduction 6

Software Project WS09/10

Job 1 » Job5

Start Job 2 i Job 4 \
Job3 —» Job6

Job performed by Agent A \

Job performed by Agent B

lllustration 1: Simplified example of a collaborative project plan

1.1 PROBLEM

Jobs in a project either involve the investment of money or result in the earning of money. From a financial
point of view, investments of money will cost less when performed at a later point of time (keeping the money
in the company for a longer time will result in more earnings of interest). On the contrary, receiving payments
at an earlier point of time will also result in more earnings of interest.

Keeping this in mind, both agents will try to arrange the start times of jobs to be performed by them resulting
in a higher cash value (see 1.1.1).

As seen in the introduction, the problem lays in the conflicting interests of both agents. How is it possible to
come up with a job schedule that will satisfy both agents interest in a maximum cash value?

One simple approach that instantly comes to mind would be to know the financial information of both agents
and of each job and to calculate a solution that will give both agents the highest earnings. Unfortunately this
approach is unfeasible because it involves the sharing of financial information between the two agents. A
sharing of financial information of this kind is unwanted.

1.1.1 CASH VALUE

Cash value is the value on a given date of a future payment or series of future payments, discounted to reflect
the time value of money and other factors such as investment risk. Present value calculations are widely used
in business and economics to provide a means to compare cash flows at different times on a meaningful "like
to like" basis.

Introduction 7

Software Project WS09/10

The most commonly applied model of the time value of money is compound interest. To someone who can
lend or borrow for years at an interest rate i per year (where interest of "5 percent" is expressed fully as 0.05),
the cash value C of the receiving monetary units years t in the future is:

t — Nt —
C C+(1+1) aT o

Applying the above mathematical rule to our involved project, the cash value of the jobs can be calculated.

1.1.2 RESOURCE CONSTRAINTS

A resource in a project could be of human nature (for example a programmer in a software project or a painter
for a painting company) or even a machine. Also, a resource can be a collection of resources like a team
working on a job. Resources have a daily constraint; in Germany a typical constraint would be 8 hours/day. A
machine might be running 24 hours a day when it is being operated in three shifts of eight hours each.

Such resource constraints have to be considered while planning a project and coming up with project
schedules.

1.1.3 PROBLEM INSTANCES BY FINK

Professor Fink who has been doing intense research on the problem published problem instances which we
used for creation of the solution and benchmarking.

There exist in total 36 problem instances with the following properties:

e 8instances for problems having 30 jobs, 4 resources, 2 agents
e 8instances for problems having 60 jobs, 4 resources, 2 agents
e 8instances for problems having 120 jobs, 4 resources, 2 agents

We will only be using these problem instances for our software solution.
1.2 GOALS

The goal of this software project is to come up with a software solution that will create a project schedule
which will yield the highest total cash value (= sum of earnings of all jobs for both agents) without the agents
sharing their private payment information with each other.

The software should be running on a distributed system to enable agents negotiating independent of their
location.

Another important goal of this project is to have an application that can be shown at open-door-days at the
university to encourage interested students to study computer science. Therefore, a neat-looking, intuitive user
interface has to be generated. Other goals are to:

e Have a stable, easy-to-handle, intuitive application with “show-room”-effect (interested students
should be able to play with the application on “open-door-days” of the HFT)

e Have a great visual demonstration of how impressive computer science is and attract students to
study computer science at the HFT

e Have results that can be compared with other projects to have some sort of benchmark

Introduction 8

Software Project WS09/10

1.3 APPROACH

In our solution approach, we will add a third, independent agent, referenced to as the “mediator”. The
mediator will only know basic information about a project like the name, number of jobs and the number of
resources involved. Based on this information, the mediator will then create a list of random proposals. A
proposal in this context is one random valid arrangement (schedule) of jobs for a given project (see 6.2.2.1
Serial Schedule Generation Scheme SSGS). The mediator does not know any payment information, therefore it
creates unbiased proposals. This list of possible proposals will be communicated to both agents. The agents will
internally and in privacy add the payment information to the proposals. Using the payment information the
agents are now able to rank the proposals based on a voting algorithm (see 6.2.3 Voting Algorithms). This will
result in a “hit list”, a ranking of which proposals an agent will favor and which one it will not like. This hit list,
not containing any financial information is then returned to the mediator.

For previous solution approaches performed in the past, the mediator would take a look at both hit lists and
look for matches. If no match is found, it would randomly generate new proposals and continue with this
process until a solution is found.

This process will eventually come up with a solution, but unfortunately this solution will not be the overall best
solution for both agents.

To come up with a better approach on how the mediator could create proposals, let’s take a look at how in the
animal world ants deal with problems regarding collaboration.

1.3.1 EXPLANATION PHEROMONE MATRIX

Let there be a collection of ants at a starting point A. Also, let there be a source of food at an ending point B.
Between these two points there exist obstacles that avoid a direct connection.

*

Start—= =

%

lllustration 2: Pheromone-example / ants dealing with an obstacle

The ants will start moving toward point B without knowing a good route yet. Imagine living in a new town
where you explore the city without knowing how to get from one place to the other. When coming across an
obstacle, some ants will decide to pass the obstacle one way, some will decide to pass the obstacle another
way (see Illustration 2: Pheromone-example / ants dealing with an obstacle). This process will repeat until the
first ant will arrive at point B (see Illustration 3: Pheromone-example / ant arrives at destination).

Introduction 9

Software Project WS09/10

-
&
]
”
-e -e
start———— === End |
S
-e

lllustration 3: Pheromone-example / ant arrives at destination

The ant will grab some food and start moving back to point A the same way it came before. How does it
remember the way? The trick is a scent of pheromones released by the ant that this ant and all others can
sense. This can be compared to the tale of Hansel and Gretel where they left breadcrumbs on the way to find
back.

This ant is following its own “breadcrumbs” — and additionally releasing more pheromone scent on its way back
to point A (see lllustration 4: Pheromone-example / ants returning back home).

e
¥)
¢ '
Start————
e % w””

-)
e > L

lllustration 4: Pheromone-example / ants returning back home

The other ants will by highest chance walk the path with the strongest pheromone scent. As more and more
ants walk the same path — the path having proved to be the most efficient way between these two points — the
scent grows stronger and stronger until you have almost all ants walking the same path.

&
§ 2

”*
- - - e
Start————= == = = End |
% % ﬁ,”'w

Y e o
Mo %

lllustration 5: Pheromone-example step 4
How can this idea of the pheromone scent be used to solve our problem?

The idea is to use a simulated “pheromone matrix” in the proposal generation. In this matrix, all possible job
sequences start with the same weight. As in the ant world — if there has not been an ant walking a path, there

is no scent.

After a negotiation round the mediator will then update the matrix according on the preferences of the agents.
Like the ants, the more ants walk a path, the more popular it is.

Introduction 10

Software Project WS09/10

When the mediator will now create new random proposals it will take the favored job sequences into account.
When performing this technique a lot of times, the proposals generated will become better and better because
they are based on what the agents prefer without knowing any financial information (see 6.2.6 Pheromone
matrix example for details).

At some point there will be a solution which both agents will favor and which will be very close to the
achievable maximum total cash value.

Because the idea of this algorithm is based on the behavior of ants, we refer to such algorithms as “ant-based
algorithms”. These algorithms have shown to be highly effective and are used for example at railway stations or
for finding perfect routes in car navigation.

1.4 PROJECT TEAM

At the beginning of the project the team divided itself into areas of special interest and knowledge and chose a
responsible for each area.

e Project Manager

o Frank Erzfeld
e Agent

o Matthias Huber
e Algorithms

o Annemarie MeiRner
e Distributed System

o Eduard Tudenhdéfner
e Infrastructure

o Sandro DeGiorgi
e Project Webpage

o JhumiKanungo

Each team member was the decision maker in their respective project area. Still, in the progress of the project
everybody got involved in other areas as well so that in the end no clear division of work has been possible.

Introduction 11

Software Project WS09/10

2 REQUIREMENTS

From the problem description and with the goals in mind we were able to derive the requirements of the
product. The requirements are divided into the business and the technological requirements.

2.1 BUSINESS REQUIREMENTS

The business requirements describe in business terms what must be delivered or accomplished to provide
value. For our project, the business requirements are described in the following chapters.

2.1.1 FEASIBLE SCHEDULE

The result of a negotiation between two agents must be a feasible schedule including the start times of the
jobs of a provided project. Feasible means that the start times must be in accordance to job-dependencies and
resource capacity.

2.1.2 SOLUTION QUALITY

The final solution of a negotiation should be of good quality. Good quality in our case equals a high total cash
value for the project.

2.1.3 GRAPHICAL USER INTERFACE

Another important goal of this project is to have an application that can be shown at open-door-days at the
university to encourage interested students to study computer science. Therefore, a neat-looking, intuitive user
interface has to be generated.

2.1.4 BENCHMARKING CAPABILITIES

There exist problem data with according solution data by Professor Fink using other algorithms to come up
with a solution for the same problem. To be able to benchmark our solutions with Fink, the software must be
able to provide all data in a format needed for comparison.

2.2 TECHNOLOGICAL REQUIREMENTS

The technological requirements describe in technological terms how the product has to be implemented.

2.2.1 DISTRIBUTED SYSTEM

The software must be able to run on a distributed system using internet technology to enable access from
anywhere in the world.

‘2.2.2 PLATFORM

The software must be able to run on the common platform of Microsoft Windows XP or higher.

‘ 2.2.3 HARDWARE REQUIREMENTS

Any machine being able to run Windows XP and meeting the requirements for Internet and the Java virtual
machine should be able to run the software.

Requirements 12

Software Project WS09/10
In this chapter we will describe how we came up with a solution to the problem.
3.1 BUSINESS SOLUTION ELEMENTS

Taking into account the business requirements, we have to think about how we can provide a solution to them.

3.1.1 FEASIBLE SCHEDULE

To come up with a feasible schedule, we will have to implement an algorithm that will use the given
dependencies, the duration and the use of resources of each job and combine them in a valid way.

Each project contains of n+2 jobs. The two extra jobs are the start and the end of a project which are jobs with
no precessor/successor, no use of resources and duration of 0.

The algorithm will have to begin with job 0 and work its way through using the dependencies.
There can be more than one valid schedule for a problem.

The feasibility of a schedule will be assured using a validator.

3.1.2 SOLUTION QUALITY

After coming up with a solution to the scheduling problem we still don’t know which solution will be of the best
quality for an agent. To find out about this, we will have to add the cash values to the jobs. This way an agent
will be able to judge for itself which solution will provide the greatest cash value to it. The cash value must take
into account the interest rate.

We will still have the problem about not knowing the total cash value of the project. Making use of the ant-
based algorithm we will provide solutions that will take into account the favored solutions of both agents and
therefore come up with an optimized total cash value for a project.

3.1.3 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) is the connection between the user and our application. On the one hand, we
need an interface that is easy to understand without previous knowledge of the application. On the other hand,
the user wants to see a lot of information.

The user interface must lead the user through the negotiation process by:
- Allowing to connect to a mediator
- Selecting a project to join
- Showing the user current information on the negotiation progress
- Present the user a final result screen
- Forms with “as much information as necessary and as little information possible”

Additionally, the GUI should be error-proof meaning that there should be no possible way for a user to enter
faulty information that will cause the software or the server to crash.

Solution Concept and Draft 13

Software Project WS09/10

3.1.4 BENCHMARKING CAPABILITIES

To be able to compare our results with Fink and have a benchmark, we will need the following:
- The name of the project (as in the problem data)
- Our maximum total cash value achieved

With this information we are able to see how good our solution approach compares with those of others.
3.2 TECHNOLOGICAL SOLUTION ELEMENTS

To meet the technological requirements, we have to think of a solution that will run on almost any machine
that is connected to the internet.

3.2.1 DISTRIBUTED SYSTEM

The easiest way to implement a client-server solution would be to have a direct communication between the
agents and the mediator. But this would be infeasible to realize because most users will have their computers
connected to the internet behind firewalls, routers, proxies and further technologies that would need a lot of
effort to run an application using a direct socket connection.

For realizing a distributed system with Java, there are different technologies on the market. Examples are RMI
(Remote Method Invocation) or Web Services. RMI is the object-oriented realization of the Remote Procedure
Call. The main advantages of RMI are that in can be realized using different protocols (RMI IIOP, Java Remote
Method Protocol, RMI over HTTP, and RMI with SSL) and that the communication between client and server is
very fast compared to Web Services. A web service is traditionally defined by the W3C as “a software system
designed to support interoperable machine-to-machine interaction over a network”. It has an interface
described in a machine-processable format (specifically Web Services Description Language (WSDL)). Other
systems interact with the web service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other web-related standards. To avoid
dealing with firewalls and security settings HTTP has to be used as the underlying protocol. The usage of HTTP
is provided both by RMI and Web Services.

The fact that the mediator has to process concurrent requests makes the task of designing a distributed system
more complex. Using RMI we would have to implement services like Security, Concurrency, and Lifecycle
Management on our own. But using Web Services in combination with a Servlet Container (e.g. Apache
Tomcat), these services are already implemented and provided by the Container. Due to this we could
concentrate on the main tasks needed to realize the mediator.

The decision was to use Web Services with a Tomcat (as the runtime environment) for realizing the distributed
system allowing the communication between an agent and the mediator.

3.2.2 PLATFORM

To be able to run the application on almost any common machine, we decided to use Java technology. Any
Windows computer that is able to install a Java runtime environment will also be able to run our application.

Also, to ease the installation and usage, we will use Java Webstart technology. By using Webstart, the user will
be able to click a link in its browser which will then lead the user through the installation process installing all
necessary files on the machine needed to run the application. Also, for future use, files will already be present
on the machine which will speed up the start and only be updated if changes to the program occurred.

Solution Concept and Draft 14

Software Project WS09/10

3.2.3 HARDWARE

Since we will be using Java any machine running one of the current operating systems will be able to run our

application. If the machine is able to surf the internet and has the latest Java runtime environment installed, it

can run our software.

3.2.4 WEB SERVICE FRAMEWORK

There are different Frameworks available which can be used to realize a distributed system in Java based on
Web Services. Examples are the Axis2 Framework from the Apache Group or JWS / JAX-WS (Java API for XML —
Web Services) which is delivered with the latest JDK version of Java. We decided to use Axis2 for realizing the

distributed system, as some of our team members already have experience using Axis2 with Tomcat as Servlet

Container.

3.3 TEAM PROJECT PLAN

At the beginning of the project we came up with a project plan to give us a time plan. This is our project plan

that we stuck to:

Milestone Contents

Due-Date

1% Tasks:

Get to know the project

perform research

talk to the customer about expectations

set up the basic infrastructure to work on
come up with ideas how to solve the problem
create UML diagrams

create the PID

Functionality:

Import problem data sets

Algorithm: Generate permutations
Algorithm: Decode permutations
Algorithm: Update pheromone matrix

11-11-2009

d Tasks:

Create first running version with basic communication

between client and server
Have infrastructure fully ready and running
Have a fully functional agent application

Functionality:

Agent: Mediator Connection
Agent: Project Selection

30-11-2009

Solution Concept and Draft

15

Software Project WS09/10

e Agent: Negotiation Screen

e Agent: Result Screen

e Distributed System: asynchronous communication
between server/client

e Distributed System: all functions needed to supply agent
with data

e Algorithm: Implement Borda voting algorithm

3 Tasks: 21-12-2009
e Perform one complete negotiation session between
agents and mediator with real problem data
4" Tasks: 07-01-2010
e Bug fixing and testing
e Project documentation
Functionality:
e Benchmarking
e Exporting of results to file
Finish e All deliverables completed 14-01-2010

Presentation of project to Mr. Homberger

Solution Concept and Draft

16

Software Project WS09/10
In this chapter we will describe the architecture of the project how it will be implemented.
4.1 SOFTWARE ARCHITECTURE

The internal structure of the software is described by UML notation in the following sections.

4.1.1 UML CLASS DIAGRAMS

These class diagrams show the primary classes of the components. Enumerations, as well as methods or class
attributes which are not necessary for the understanding of the components are not included.

14.1.1.1 AGENT

The Agent class diagram shows all classes which are needed to run our SWT application AMP. The following
listing describes the aspects of the classes or interfaces:

e Amp: This class creates the application and runs the SWT event loop. The loop handles all events that
occur, e.g. handle key events like pressing a button. Without the event loop, Amp would close
immediately after opening. Another task of this class is the switching between different views. Only
one instance of Amp exists which is hold by the AmpManager.

e AmpManager: The AmpManager is the most important part of the graphical user interface. The class
holds the Agent, a stub and a wrapper instance. The wrapper instance is used to communicate with
the mediator. Beside that the class also holds the different views and the negotiation session. The
AmpManager offers static methods to access these elements.

e MediatorAgentServiceWrapper: This class retrieves the Web Service requests from the client and
sends them to the Mediator. It encapsulates the marshalling/converting of the data which cannot be
sent by Axis2 and therefore makes the communication transparent to the client.

e Agent: This class calculates the total cash value for the proposals and performs the voting.

e IView: This is the interface for all views. Every view must implement the necessary instructions for its
lifecycle: initial creation, registering at the view composite and disposal of the view. As described,
every view registers itself at the ViewComposite, which is itself registered at the AmpManager.

e NegotiationSession: Every negotiation has its own instance of this class. This class is used as a client-
side storage during the whole negotiation process. Every round the session receives new information,
which are stored internally. The class provides static methods for accessing the stored data. This way,
during the negotiation every chart retrieves the necessary data from this session class.

e IChart: This is the interface for all charts. Beside the creation and disposal of the charts, every chart
implements two methods which are invoked each negotiation round. First, the necessary data is
retrieved from the negotiation session and the new values are calculated. After that, the chart
performs an update.

o DataOutputWriter: This class stores the result of the negotiation in form of a csv file onto the file
system.

Architecture 17

Software Project WS09/10

package agent| Agem |

Amp

MediatorAgentServiceWrapper

-display : Display
-shell : Shell

+create(width : int, height : int) : void
+switchToView(viewEnum : ViewEnum, shell : Shell) : void

-stub : MediatorAgentServiceStub

+registerAgent()

+unregister Agent()

+oinProject()

+leaveProject()
+retrievePaymentDataForProject()
+retrieveProposals()
+setProposalsWithScore()
+setProposalsEvaluationPoints()

+retrieveProjectChanges()

+getWinnerProposalsindexOfLastRound()

Agent

-round : int

-negotiationRounds : int

-totalCashValuesAgent : Double [0..*]
-totalCash'/aluesMediator : Double [0..*]
-projectLengths : Integer [0..*]
-latestWinnerProposalMediator : IProposal
-isFinished : Boolean
-chartComposite : ChartComposite

ChartComposite

-charts : List

+update() : void

+addChart(chart : IChart) : void

|
|
|
|
|
|
|
|

i

+retrieveProjectChange()
N AmpManager
-payments : Double [0..*] -amp : Amp
-project : IProject -agent : |1Agent

-stub : MediatorAgentServiceStub
-negotiationSession : NegotiationSession
-wrapper : Mediator AgentServiceWrapper
-availableProjects : IProject [0..*
-viewComposite : ViewComposite

-currentProject : IProject
-winnerProposal : IProposal
-agentld : int

-interestRate : double

-payments : Double [0..*]
-votingAlgorithm : IVotingAlgorithm

+calculateTotalCashValue(proposal : IProposal) : double

¥

IAgent

-neqotiationDataMap : NeqotiationData [0..*]

wosition : Proposal 0

P gl prop

+resetStublnstanceOnDisconnect()
+retrieveAvailableProjects()
+resetAvailableProjects()

+createNeqotiationSession()

ViewComposite

-views : List

+addView(view : [View) : void
+dispose(event : TypedEvent) : void

T

Pr

IChart

+create() : void

+update() : void
+dispose() : void

+computeNextRound() : void

() Niew

+show() : void

+register() : void
| +dispose(event : TypedEvent) : void K

TotalCashValueLineChart | __ - X ~ — _|ProjectView
CON B T
e N
| - / [' N
g
P / | | N
IResult\Iiew | |NegotiationView
[ResourceAllociﬁonPhn |RoundProgressBar‘ IResource.lohPlan lL IL
| | I
DataOutputWriter
+writeSolutionProposal()

Illustration 6: Agent class diagram

4.1.1.2 MEDIATOR

The UML diagram of the Mediator (lllustration 7) contains all data necessary to run the Mediator as a
WebService and to mediate between two Agents. The list below contains a description of the important classes

and components.

e MaediatorServicelLifecycle: is running as a Servlet and the methods of the class are called by the Axis2

framework when the service is deployed.

o MediatorAgentService: contains the methods which can be called through WebService by the Agents.

This class delegates all calls to the Mediator class, except the registration requests.

e Registration: handles the whole registration process of an Agent. An Agent can register itself and gets

a unique identifier. This identifier is created using the AgentldGenerator.

e Maediator: the Mediator itself works like a Singleton and is instantiated when the first request comes

in. It is the core of the server-side which has the purpose to mediate between two Agents. For this a

Architecture

18

Software Project WS09/10

MediationSession is used. Everything regarding the negotiation between two Agents is processed
within such a MediationSession.

e MediationSession: When two Agents are negotiating, this is done within such a MediationSession. This
class contains all information necessary for a negotiation. Within this session, new proposals are
generated by using one of the concrete implementations of ProposalGeneratorAbstract. With the
MediationSession it is also possible that one project can be processed by more than two Agents,
because each project runs in such a session. For example two Agents could work on project X_35 and
another two Agents could work on the same project, but completely independent from the first two
Agents.

e DatalO: is used by the Mediator class to initialize the whole problem data with the payment
information. The DatalO uses the ProjectidGenerator to create unique project identifiers. When a
negotiation between two Agents is finished, then the results are saved in a SolutionData class.

e ResourceCleaner: is started on deployment. Its purpose is to free up consumed resources by
Mediation Sessions.

package mediator [Msdiaiur]J

ResourceCleaner

-CLEAMUP TIME : long
-cleanerThread

+start() : void
+stop() : void

MediatorServicel ifecycle
-resourceCleaner | ResourceCleaner

+startlp(configurationContext : ConfigurationCortext, axisService : AxisService) : void
+shutDowni configurstionContext : ConfigurationContext, axisService : AxisService) : void

MediationSession

-gps : double

-currentProject : IProject

-creatorAgentld ; int

-proposalGenerator : ProposalGenerator Abstract
-proposalsOfCurrentRound | ProposalComposition
~vating Algorithm : VetingAlgorithm

MediatorAgentService

registerAgent() Mediator _currentAgentsOnSession - Integer [0..4]
+unregister Agent() -availableProjects : IProject [0.1] -negotistionRounds : int
+getAvailableProjects() -projectComposition : ProjectComy -currentRound : int

tion
-mediationSessionMap : MediationSession [0..%]
-nstance : Mediator

-proposalsPerRound : int

-interestRate : double

-proposalEvaluation? : ProposalComposition
-proposalEvaluation2 : ProposalComposition
-winnerProposallastRound : IProposal

+oinProject()

+leaveProject()
+retrievePaymentDataForProject()
+retrieveProposals()
+setProposalsWithScore()

<<usEss

+oinProject()
+leaveProject()

+setProposalsEvaluationPoints()

+getiinnerProposalsindexOfLastRound()

+retrievePaymentDataForProject()
+retrieveProposals()

+retrieveProjectChangesi)
+retrieveProjectChange)

+sendirterestRate()

|<suse>>

4

-winnerProposalindexLastRound : int
-totalCash\/alueFirstAgent : double
-totalCash\alueSecondAgent : double
-sumFirstRound : double

+retrieveProposals(agentld : int) : ProposalComposition
+upclatePheromoneMatrix(bestProposal : IProposal) © void
+performAggregation() - void

Registration
-registeredAgents : Integer [0..*]

+register Agent() : int
+unreqister Agent(agertld : int) boolean

+addAgentToSession(agentld : int) ; void
+remove AgentFromSession{ agentid - int) : boolean
DatalO +removeAllAgentsFromSession() : void

-projectidGenerator : ProjectldGenerator

+load AllProblemData()
+loadProblemDital)
AbstractidGenerator +HintWriteNegotiationTimeLine()
a it +writeEvalustionSclution()
i +wiriteNegatistionTimeLine() ProposalGeneratorAbstract
+writeNegatistionSoltion() 5
T +closeWriteMegotiation TimeLine() -project : IProject
+dumpData() #negotiationRounds : int
-numOfProposals : int
| #pheromoneMatrix : Double [0..*]
g ator Proj ator -starttimeModel . ProposalGeneratoriModelEnum
+generateProposals() : ProposalComposition
L [progp s 1Py f, Diat) void
+printPheromoneMatrix() : void
-projectMame : String

-numOflobs : int ?
-bestSolLtionOneAgent] : double

-bestSolutionOneAgent2 : double
-bestSolutionMuttiAgent : double
-solutionAMP_start : double
-solutionAMP_end : double

-voting Algorithm : String
-numberOftterations : int
-numberOfProposals : int
-proposalGenerator Algorithm : String

[
ProposalGeneratorAdvancedAddition

-updatelnit : double
-percentageOfRounds : double

+updatePheromoneMatrix(proposal : Proposal, currentRound @ int) void

-makespans : int"]" [0..*]

et AMistisr g ProposalGeneratorPrimitive

+updatePheromoneiatriz(proposal : IProposal, currentRound @ int) void

lllustration 7: class diagram of the Mediator

Architecture 19

Software Project WS09/10

14.1.1.3 COMMON LAYER

The common layer (lllustration 8) contains data holder classes which are used by the mediator as well as by the

agent. The data classes Proposal and Project use both the data class Job as central entity of the project. The

projects and the proposals are collected in a container, the ProposalComposition and the ProjectComposition.

The VotingAlgorithm interface and its different implementations are also part of the common layer. At the

moment, only the Borda algorithm is implemented, but with the flexible interface new implementations can be

added easily by implementing the two methods performVoting and perfomAggregation. The method

performVoting of the interface is used by an agent to evaluate the provided proposals. Using the method

performAggregation, the mediator finds the winner of the voted proposals.

package common [Common Laryer]J

|
CopelandVotingAlgorithm

i i
|
|
|
|

|
ApprovalVotingAlgorithm

ScoringVotingAlgorithm

llk
|
|
|
|

NotingAlqoritim
+performlioting bestTotalCashlialne | donbie, totalCashliainedliProposals)
performigaregation proposa tiondgent! : Proposa ition, proposs tonAg tion) : Froposa

BordaVotingAlgorithm

PluralityVotingAlgorithm

Liod

+eionef) : Mok

+equ._9.l’s(aby - Dbfect) boolean

rett CEF !
+retrieveStant TimeFromindex| resourceindesx - int) - int
+adjustStant TimeForindexi startTime - Int, resonrceindex int) © vold

? Sint)int

-numberOfobs ©int
-numberOfResources : int
-maxCapacities ; int"[]" [0.4]

-jobs : [Jok [0.%]
~currentAgentsOnProject © Integer [0..%]
~vating&lgarithm © 1Y ating Algorithm

+HoString() : String

v

IProject &

retrie f Foprd i jobNymber D int) idob
+adddgentToProfect! agentld : int) © vold

+remaved gentFromProfecty agenticd - int) - boolean
+cfonel) IPraject

ProjectComposition

-projects : IProject [0..%]
-paymentDatabap : Double [0,

+addProject; project : IProject J : vaid
+getProjectByid] int projectid) : IProject
+getiumberOfProject=0) : int
+getProjectByindesx int index 1 : IProject

-successors ok [0.#]
-predecessors | [Job [0.#]
~payment : double
~resources | int"[]" [0..%]
-startTimes : int"{]" [0.]
~agentld ; int

~projectld ; int

reiti o TirmeFt ! ! int) it
3 s i g Shdob) vaid
+addSuccessor shccessor | ob) vaid
Cd £|} ™
-~
- ~
-~ |
" ~
Project Job
~projectd ; int " a
_mrai - i -jobMumber : int
projectMame : String e

Proposal

~permutation : 1ok [0.%]
-numberOflobs ©int
-numberOfResources : int
-starttimes : Integer [0..*4]
-evaluationPoints © int

v

IProposal

+clape() : IProposal
+eqguals| oby - Object) - boolean
tvicie D S

rett rmutation 't
+oglenlateMakespans() : int (1

romdobl job idob) List=idobs

ProposalComposition

-proposals : IProposal [0..%]

+addProposal] proposal ; IProposal) void
+gethlumberOfProposals() : int
+getProposalBylndex(int index) : IProposal

lllustration 8: Class diagram of the CommonLayer

Architecture

20

Software Project WS09/10

4.1.2

UML SEQUENCE DIAGRAM

interaction AMP Overview [AMP Overview]J

| e 1: register = Y 4
| / |
2: agentlD 7 |

| < - - - - - —-"— - - - — — —
| 3: getAvailableProjects | y . !
| Project Initialization |
| e 4: return available projects |
|
| 5: joinProject N I |
l 6: success]_J |

| < - - -"—-"-—"—-—"—-—"—- - — — —
| 7: receivePaymentData N | ‘
|
l 8: return payment data M |

| (G o s e e e e
| 9: waitForAnotherAgent [l
| e | ' ‘
\ | '
loo s ? /|

10: retrieveProposals , 11: generateProposals /
[] |
A 12: return generated proposals £
13: evaluateProposals Negotiation fteration
14: setEvaluations 15: aggregateProposals
16: updatePheromoneMatrix
e e] T D A e A T D e e R R P T e A e L T B D e] T g o \
|

| 17: unregister T |
|
| 18: showResults |
l ; | |
l [Result View |
| | |
_ . _ _ J_________>.

Illustration 9: UML Sequence Diagram

Architecture

21

Software Project WS09/10

The sequence diagram can be interpreted as follows:

1. The agent registers itself at the mediator

2. The mediator returns a unique ID to the agent

3. The agent asks the mediator for available projects

4. The mediator returns a list of all available projects to the agent

5. The agent joins a project

6. The mediator confirms this joining

7. The agent requests its payment data for the chosen project

8. The mediator sends the correct payment data to the agent

9. The agent waits in a loop until another agent successfully joined the same project
10. The agent requests a list of proposals

11. The mediator generates a list of proposals

12. The mediator sends the generated proposals to the agent

13. The agent evaluates the received proposals

14. The agent sends his evaluated proposals to the mediator

15. The mediator aggregates the evaluated proposals of both agents

16. The mediator updates the pheromone matrix according to the aggregated proposals
17. The agent unregisters from the mediator

18. The agent shows the results to the user

Bold items are repeated in a loop until the last round has finished or the negotiation is canceled.

4.2 SYSTEM ARCHITECTURE

The system architecture is quite easy, the agents communicate with the mediator over the internet (see
Illustration 10: System architecture)

AGENT 1 MEDIATOR AGENT 2

lllustration 10: System architecture

Architecture 22

Software Project WS09/10

5 DEVELOPMENT ENVIRONMENT

In this chapter the set up of the development environment for our project is explained.

All traffic needed to be routed to go on port 80. The system needs to be reachable being behind a firewall and
proxy server for on-site operation at the customers place. The tools used had to be productive-proven, open
source/no cost and useable to perform state of the art software development. A development server was

provided by the customer.

(/

Infrastructure HE (091222/v1.0)

mod_dav_swn

libapacha2-svn
Subversion 1.4 8

hiip:isopro_axamer.dal'svn/

{placchoider) —\

Redmine 0.7.2
hitlp:fsopro.examer dedredmine!

s
L]

Diofault instal
Direct arcess. par; S040
Warker part 009

3169191453

mod_proxy_ajp mod_proxy_ajp

Deefaul ihatall

TR —

3

e Ry

Tomcat &

MySQL 5051a http:/ftameat examer. de

Illustration 11: Infrastructure

5.1

TOOLS AND VERSIONS OF USED SOFTWARE

Apache httpd 2.2.8
Apache Tomcat 6.0.20
Apache ant 1.7.1
Redmine 0.7.3
Mongrel x.x.x
Subversion 1.4.6 (r28521)
Hudson 1.333

JDK 1.6.0_16-b01
MySQL 5.0.51a
JUnit4.3.1

Checkstyle 5.0
FindBugs 1.3.9
Cobertura 1.9.3

PMD 4.2.5

Development Environment

=

Hudson 1,333
http:ftomeoat axamer.da/hudson’

23

Software Project WS09/10

5.2 OPERATING SYSTEM

The operating system needed to be as reliable and resource efficient as possible. It was also important to build
a base to be able to run the chosen free software in - at best - current versions. The debian based Ubuntu 8.04
LTS (64-Bit) Linux operating system was chosen.

5.3 PROJECT MANAGEMENT

As online project management tool a software product called Redmine was chosen. It is a ruby on rails web
application by Jean-Philippe Lang, which is one of the best solutions on the free market at the moment. It
offers all needed features for the accomplishment of a collaborative project success. Redmine was also
connected to the Continuous Integration and Version Control systems (see further down). To run Redmine the
rails web server Mongrel was used.

5.4 VERSION CONTROL

Subversion was chosen for Source Code Version Management. There is no good reason anymore to stick with
CVS. We omitted the chance to play around with one of these widely upcoming GIT systems, since no team
member has experience with that kind of system, and we averted to catch additional complexity at this point.

5.5 CONTINUOUS INTEGRATION

As concurrent work on the same source code was inevitable and the nature of Subversion gives every
participant a local copy of the complete project, it was very important to integrate as often as possible - in a
central place, transparent for all participants. No more “but it runs on my machine”. Every project had to be
integrated, tested, build, deployed and run (for the Mediator) on the development server. Therefore the well
known Hudson continuous integration system was installed and used.

5.5.1 AUTOMATED BUILDS / AUTOMATED TESTING

The automated builds were done using Apache Ant. The automated testing used the integrated abilities of
Hudson and some Add-ons. On Subversion updates and on successful compilation several tests (including JUnit
tests) were performed.

5.5.2 APPLICATION SERVER

To run Hudson and for the actual deployment of the final product an application server was needed. The light-
weight application Apache Tomcat was chosen.

5.6 ENABLING THE WEB ACCESS

As doorman Apache httpd2 was used. To enable the access to the different systems several modules were
used:

e mod_dav_svn and libapache2_svn was used to connect to the Subversion server
e mod_proxy was used to connect to Redmine on Mongrel server

e mod_proxy_ajp was used to connect to the Apache Tomcat AJP Connector

e mod_proxy_ajp was also used to connect to Hudson Cl Server

Development Environment 24

Software Project WS09/10

6 PROTOTYPE

This section deals with the actual implementation of the solution and is divided into the different parts of the
software respectively.

6.1 INFRASTRUCTURE

The approach in finding most suitable solutions in distributed computational problems used in this software
project bases on findings and proposals by [Dorigo, et al, 1991] and further papers in this field (see
reference section for a complete list). It uses a combination of positive feedback (autocatalytic)
and constructive greedy heuristics.

Dorigo's explorations show, that these autocatalytics lead to a "rapid discovery of very good solutions"
and the inherent information deficit in distributed computation prevents premature convergence to a
suboptimal outcome and the greedy heuristics ensure that the approach is able to find the wanted
good solutions in the early stages of the process.

Dorigo showed the success of this approach on the well known travelling salesman problem. Parts of the
paper give several hints how to apply this approach to a "variety of optimization problems".

A lot of research has been done in this field, since even critics have to admit that the proficiency of this
approach is formidable.

This software project now focuses on the problem of a distributed search for an optimal solution in
resource constraint project planning. As time of writing, an approach to this kind of problem using the
"Autocatalytic Optimizing Process" (that is: a so called ANT SYSTEM) has not been conducted, and the
project team is happy to share the results with the interested public.

6.2 ALGORITHMS

First, some assumptions/notations:

e A proposal is a possible solution for the project scheduling problem of the two agents. Such a proposal
consists of a ordered list of all activities of a project and for each activity a start time of the job in the
overall project plan.

e The winner of one negotiation round is the proposal, which delivers the highest total cash value for both
agents.

e (Cis the set of proposals, which are provided by the mediator.
e misthe number of proposals(ants), which are generated per round.

e nisthe number of negotiation rounds.

6.2.1 GENERAL ANT ALGORITHM

In this section we describe the general “Ant Negotiation Algorithm” for our multi agent project scheduling
problem, based on (1). In the following diagram the general algorithm is described.

Prototype 25

Software Project WS09/10

Input: m number of proposals per negotiation round;
Mediator: initialize the pheromone matrix P with 1.0
Mediator: initialize the solution of the negotiation with null
Mediator: set current round t to one
While (t unequal to the n)
Mediator: generate a set of m proposals (Ants)
based on P
Both Agents: evaluate the given Ants using a
voting rule
Mediator: perform aggregation with the voted
Ants and select the Ant with the
highest score as winner
Mediator: replace the solution of the
negotiation with the winner
Mediator: adapt P regarding to winner using a
adaptation rule
Output: the solution of the negotiation.
6.2.2 PROPOSAL GENERATION

In this section we describe, how the mediator generates a proposal, also called ant, based on (2). In (2) there

are two different schedule generation schemes described, the serial schedule generation scheme and the

parallel schedule generation scheme. We decided to use the serial schedule generation scheme, because the

parallel schedule generation scheme delivers not necessarily an optimal solution. In the following a short

introduction to the serial schedule generation scheme is given.

16.2.2.1

SERIAL SCHEDULE GENERATION SCHEME SSGS

In the following, a list of some notations that are used in the following:

R = {Rl,..

given between the activities.

K is a set of k resource types.

Every activity j € J has a completion time d]- and resource requirements i1,

Prototype

., R} is the set of maximum resource capacities where R; > 0 is the constraint.

requirement for a resource of type i per time unit when activity j is scheduled.

J = {0,...,n + 1} denotes the set of activities of a project. We assume that a precedence relation is

Tk where T is the

26

Software Project WS09/10

Let P; be the set of immediate predecessors of activity j. 0 is the only start activity, that has no predecessor,
and n+1 is the only end activity, that has no successor. We assume that the start activity and the end activity
have no resource requirements and have processing time zero. A schedule for the project is represented by the
vector (sg,S1,...,Sp41) Where s; is the start time of activity j € J. If s; is the start time of activity i then
fi = s; + d; is its finishing time.

A schedule is feasible if it satisfies the following constraints:

e Activity j € J must not be started before all its predecessors are finished, that is 5; = s; + d; for every
si € P.

e The resource constraints have to be satisfied, that is at every time unit t the sum of the resource
requirements of all scheduled activities does not exceed the maximum resource capacities, that is for
every resource of type i it holds that

S]'E],Sjst<5j+dj

The SSGS starts with a partial schedule that contains only the start activity 0 at time 0. Then SGS constructs the
complete schedule in n steps where at each step one activity is added to the partial schedule constructed so
far. In every step one activity j is selected from the set of eligible activities, which are activities that have not
been scheduled so far and where each predecessor has been scheduled.

For every eligible activity j let EF; be the maximum finishing time of all its immediate predecessors plus d;. Let
LF; denote the latest finishing time of activity j that is calculated by backward recursion from an upper bound
of the finishing time of the project. Then the start time of activity j is the earliest time in [EF] —d;, LF; — dj]
such that all resource constraints are satisfied.

6.2.3 VOTING ALGORITHMS

In this section we describe the voting algorithms, described in (3), which we discussed to use in our project.
There are other common voting algorithms described in (3), which are not feasible for our problem.

The whole voting process consists of two different steps:

1. the voting of the given proposals, which is performed by the two agents, where both agents give
“points”, according to their preferences for the given proposals.

2. the aggregation of the voted proposals, which is performed by the mediator, to find the common best
solution for both agents, using the two different votings for the given proposals.

In the following, a short introduction to the discussed voting algorithms is given.

56.2.3.1 SCORING RULE
1. Voting of the given proposals
letd =< ay, ..., @, > be avector of integers such that a; = «;;. For each voter, a proposal receives:

e a4 points if it is ranked first by the agent,
e a, points if it is ranked second by the agent,
o etc.

Prototype 27

Software Project WS09/10

2. Aggregation of the given proposals

The score of a proposal is the sum of the points the proposals receive by the two agents. The proposal with the
highest score wins.

6.2.3.1.1 BORDA

The Borda rule is the scoring rulewithd =< m—1,m—2,...,0 >

6.2.3.1.2 PLURALITY

The Plurality rule is the scoring rule with @ =< 1,0, ... ,0 >

Note: The likelihood for one winner is very low with this approach. There can be the case of no match of the
two agents voting and therefore no winner.

6.2.3.1.3 APPROVAL

1. Voting of the given proposals

Each agent labels each proposal as either approved or disapproved.
2. Aggregation of the given proposals

The proposals which are approved by both agents are the winners.

Note: The likelihood for one winner is very low with this approach. There can be no match and therefore no
winner or several matches and therefore more than one winner.

6.2.3.1.4 COPELAND

1. Voting of the given proposals

N(i, j) is the number of agents who prefer proposal i more than proposal j. For any two distinct proposals i and
i, let C(i,j) be

1, ifNGJj)> NGD
if N(i,j) = N(j, 1)
, if N(i,j) < N(,i)
2. Aggregation of the given proposals
The Copeland score is
=) CGp
j#i

The proposal with the highest score wins.

6.2.3.1.5 CONCLUSION

We decided to use the Borda Algorithm, because with this algorithm the voted proposals of the agents have a
clear preference hierarchy and the mediator has the assurance for exactly one winner per negotiation round.

Prototype 28

Software Project WS09/10

6.2.4 ANT COLONY OPTIMIZATION AOC — ADAPTATION RULE

In the following, the AOC is described, based on (2). The general idea of the ACO approach is to use an ant
algorithm for deciding which activity from the set of eligible activities should be scheduled next by the SSGS.
The general principle of the ant algorithm is similar to an ant algorithm called AS-TSP for the travelling
salesman problem of (Dorigo, 1992; Dorigo et al., 1996).

In every generation each of m ants constructs one solution. An ant selects the activities in the order in which
they will be used by the serial schedule generation scheme. In (2) for the selection of an activity the ant uses
heuristic information as well as pheromone information. But in our approach we use only the pheromone
information, because of the distributed system. The heuristic value is generated

by some problem-dependent heuristic. In the distributed system we do not know the total cash values of the
agents, which we have to know for using heuristic information for the selection of an activity.

The pheromone information, denoted by p;;, are indicators of how good it seems to schedule activity j as the
ith using the SSGS. The next activity is chosen according to the probability distribution over the set of eligible
activities E. In our approach is this according to

Py = et Tin

The best solution found in the current generation is then used to update the pheromone matrix. But before
that some of the old pheromone is evaporated on all the edges according to

py =0 —f)xpy

where parameter f determines the evaporation rate. The reason for this is that old pheromone should not have
a too strong influence on the future. Then, for every activity j € J some amount, an update unit uu, of
pheromone is added to element (ij) of the pheromone matrix where i is the place of activity j in the best
solution in the current round:

Tij = TU + uu

Prototype 29

Software Project WS09/10

6.2.5 IMPROVEN PHEROMONE MATRIX UPDATE

The old pheromone should not have a too strong influence on the future. To improve the update of the

pheromone, a variable update unit vu of the pheromone matrix was introduced.

Linear increasing function

e T
e cr
e uu
[) p‘r

- number of negotiation rounds

- current negotiation round

- Static update unit of pheromone matrix

- negotiation round for which uu is constant > pr < r

cr

u =—uu

pr

Use of this variable update unit we have been able to improve the results of the negotiation significantly.

6.2.6 PHEROMONE MATRIX EXAMPLE
Take this small example for the shown network plan:

1. Pheromone matrix update
Assume the following first solution:
S={1, 2, 4, 3, 5} and update unit for the pheromone matrix of uu =1 2

Job 5 1 1 2 1 1
Job 4 1 2 1 1 1
Job 3 1 1 1 2 1
Job 2 2 1 1 1 1
Job 1 1 1 1 1 1

Job1 Job2 Job 3 Job4 Job5
2. Select eligible activity

Assume the following partial schedule
S, = {1,2} and a set of next eligible activities E= {3, 4}

N 3

L0

S={1,2,4,6 3,5}

= Y all eligible activities of colunn2 =3 = P; = %, P, = § = higher probability for act.4

Prototype

30

Software Project WS09/10

6.3 DISTRIBUTED SYSTEM

The main goal of a Web Service Framework is the platform-independency. The implementation of a service can
be realized in one programming language and used by a client implemented in a different language. A C#-Client
can therefore for example use services written in Java. With Web Services the exchange of messages between
service provider and service user is handled by XML messages. Most Web Service applications aren't concerned
with XML. Instead such applications want to exchange business data that is specific to the application. XML is in
this case just a format used to represent the business data. For this purpose XML provides a platform-
independent representation that can be handled by a variety of tools. But finally these applications need to
convert the XML to or from their own internal data structures to use the data within the application. To
accomplish these tasks, different Data Binding Frameworks can be used within Axis2. The default Data Binding
Framework used in Axis2 is ADB. ADB allows converting primitive data types (int, float, double), Strings and
Arrays, but there is no way to send Java-specific data types like Lists, HashMaps, Sets. Besides ADB, there are
other Data Binding Frameworks which can be used within Axis2. Examples are XMLBeans, JAXB or JiBX. Some of
them can solve the problem of sending Java-specific data types over the network, but these Data Binding
Frameworks give working with the source code an XML-like behavior. The code gets very XML-specific and
loses its natural way.

Using these Data Binding Frameworks isn't satisfying our needs, so we decided to use ADB for simple and
primitive Java types and to write our own Marshaller. The purpose of the marshaller is to convert the data
formats which cannot be sent by ADB. On the server-side the data is converted and wrapped into a format
which can be handled by ADB and on the client-side this data is then unwrapped and converted back into the
original format. This solution gives us the easiest way of dealing with the problem of Data-Binding with Web
Services.

6.3.1 ARCHITECTURE OF THE DISTRIBUTED SYSTEM

The overall architecture of the distributed system can be seen below.

Agent Mediator
e e T Tt
T e "" k.
it Mediat tServi
e B — SR ! : ;l' - register[)iunligiste?[;%en erviee
Stub 1! - getAvailableProjects()

i I - joinProject()

1 v - leaveProject()

- retrievePaymentData()

- retrieveProposals()

A setProposalEvaluations()

l. = - retrieveProjectChanges() / retrieveProjectChange()

Session Proposals 1) Cleaner [

R yEoerases P see Y b Marshaller / Converter ;
i: Votingof i: Selectionof i: P! L T
& : 2l ; =) Data . i
t; Solutions 1, Projects 1 ! !

) ————— . T — s !
g FpTTEmEEEEE=ES S S.rTT YT TR 1 Y
O views Charts :! DataWriter i A A T/ S
[b 1 i Voting 1. Registration 1; Pheromone 1
[irteblebntehetionti ikttt ittt il i 1; Algorithm 1, of Agents 1 Matrix I
; | .". P i A A Sl '-.l "'.'_-.'_-.'_'.'_'.'_'-': "'.‘_-.'_-.'_-.'_" '_'-'-:' 1
y i 1i Mediation i; Generatorfor 1; Resource | |
1
1
1
1
1

lllustration 12: Architecture of the distributed system

Prototype 31

Software Project WS09/10

6.3.2 DESCRIPTION OF THE SERVICE METHODS

There are different service methods provided by the Mediator to the Agents. A detailed description can be

seen below.

register() / unregister(): Allows an Agent to register or unregister itself from the Mediator. If a
registration process was successful, then the Agent gets a unique identifier. An identifier is never
reused when an Agent unregisters itself.

getAvailableProjects(): An Agent can ask the Mediator for all available projects which were
initialized at the beginning of the lifecycle of the Mediator.

joinProject() / leaveProject(): After retrieving all available projects from the Mediator an Agent
can choose a specific project and then join it. When joining a project the Agent has to wait for
another Negotiator. If the Agent gets impatient it's also possible to leave the project and join
another project.

retrievePaymentData(): Each Agent can retrieve its payment data from the Mediator. Therefore
the Agents don't have to read the payment data from a file each time they join a specific project.
The Mediator itself just holds the payment data and doesn't use it for calculating stuff (The
payment data is initialized when all available projects are initialized).

retrieveProposals(): When two Agents have joined a specific project, then they are able to
retrieve proposals for their Negotiation.

setProposalEvaluations(): After each negotiation round each Agent sends the voted solution to
the Mediator. Based on this information new proposals are generated.

retrieveProjectChanges() / retrieveProjectChange(): These methods are called by the Agents to
get changes for one or more projects. If an Agents waits in the Project View and another Agent
joins a project, the first Agent sees the changes. Retrieving information for a single project is
needed when an Agent has joined a specific project and needs to wait for another Agent to join. If
a second Agent joins the project, both Agents know that the negotiation can start.

6.3.3 DESCRIPTION OF THE MEDIATOR COMPONENTS

Prototype

Marshaller / Converter: On the server-side the data is wrapped and converted into a format
which can be handled by the Axis2 Data Binding Framework.

Mediation Session: The negotiation of two Agents is performed in a session object.

Generator for IDs: Different generators are used for the identification of Agents or projects.
Therefore we have a generator which purpose is to generate unique IDs for Agents and a
generator that generates unique IDs for projects.

Generator for Proposals: Based on the evaluated points new proposals are generated and sent
back to each Agent.

Pheromone Matrix: This is the Pheromone Matrix which is updated in each negotiation round.
DataWriter: This component handles the initialization of projects, jobs, payment data and so on.
All the information is gathered from files at the beginning of the lifecycle of the Mediator.
Registration of Agents: This component manages the registration of Agents.

Resource Cleaner: The purpose of the Resource Cleaner is to free session objects which are not
used anymore and only consume resources. Using such a Cleaner is an easy way to avoid
remembering the state of each session at the Mediator. Remembering state can get very
complex, so we decided to use this solution.

Voting Algorithms: These algorithms have an important impact on how the voting is performed.
Currently only the BORDA algorithm is implemented, but the system is designed in a way that
other algorithms can be easily added.

32

Software Project WS09/10

6.3.4 DESCRIPTION OF THE AGENT COMPONENTS

Prototype

Stub: The stub is responsible for the communication between the Agent and the Mediator.
Marshaller / Converter: On the client-side the data is unwrapped and converted back into the
origin format and then passed to the Agent.

Voting of Solutions: Solutions are voted based on the selected Voting Algorithm.

Selection of Projects: An Agent retrieves all available projects and has the possibility to select and
configure a specific project. The second Agent joining this project can't do any changes to the
previously defined settings by the first Agent.

Views: Different views are implemented where the user can for example select a Mediator to
connect to, get an overview over all projects, participate in a negotiation and get a result view
where the outcome of a negotiation is shown.

Charts: During a running negotiation different charts are drawn to show the progress of the
negotiation.

DataWriter: after a negotiation the user has the chance to save the outcome into a file.

Data: represents all the data that is needed within the different steps of processing.

33

Software Project WS09/10

6.4 AGENT

This chapter will explain how the agent was designed and implemented and how it is used.

6.4.1 SPECIFICATION / DESIGN

The agent will be the interface between the user and our application. Therefore it will need to provide all the
functionality on user side packed into a nice neat looking graphical user interface.

At first, the user will need to choose to what mediator to connect to. We thought of a list of pre defined servers
with the possibility to add or edit as needed (see lllustration 13: Draft of the mediator connection screen). After
having selected a mediator, the user will connect to the mediator and fetch the available projects from the
server via webservices.

l‘ Cl\mm nEd«u.{cr)
- AONNC']
Medd (792 x2x w)A] G]T—>
Med T (”‘ll)rxx») D |P L |
% Concel| (OK |

Ct&“u‘.L
-z
2l

Illustration 13: Draft of the mediator connection screen

On the next screen, the user will be presented with the list of available projects. Also will the user be able to
see detailed information on a project like number of resources and their capacities, number of connected
agents and further information necessary to start a negotiation like voting algorithm, number of iterations and
proposals per round (see lllustration 14: Draft of the project selection screen). After selecting a project and
clicking on the join button, the first user to “join” a project will wait for another user to join the same project.

Lc'*'*"“c\/ = L\U‘L' :qA-,bl«e«A albeul pryack
\ = yobos

- -
nﬁegzﬁ@f\ AT

\ect & — ‘ s B
Irsect 3 (7B LT O e | Febtercy

w:')ca' S {

N [

<

"4 mow oy L

| [— JOIN ;-

{

Illustration 14: Draft of the project selection screen

When both users have successfully joined a project, they will be entering the negotiation view. In the
negotiation view the user can follow the status of the negotiation and will be presented with visualizations of
the development of the cash value, capacity plans, resource plans and project statistics and information.

Prototype 34

Software Project WS09/10

. ‘\\/ /\' A
/-" G & ~ -
maype v | &7 D mavbe: gobos 4
Colowred! B enhct pdt
‘/ri‘ L71 -17 p AR \QGYP
S - = —3 Wikalae
o
(c\«yﬂ%/&: Mu‘”
pmetknane 2| § 8
yoles g R P pete
ot I E, é
 hd
A
N«;&. : B e =1 $0/4¢0

Illustration 15: Draft of the negotiation screen

To maximize usage of display space, the user will have the possibility to switch between the different resources
and information. The user will also be able to cancel the negotiation (see lIllustration 15: Draft of the

negotiation screen)

After successful completion of a negotiation, the user will end up with the result screen. Here the user will have
all important information at hand like facts to the winning proposal, all charts from the negotiation and the

possibility to save the results to disk (see Illustration 16: Draft of the result screen)

o et Foles &

=

Wi plea:
- Tow GohValus

1000 §

Illustration 16: Draft of the result screen

Prototype

Software Project WS09/10

6.4.2 |IMPLEMENTATION

At the beginning of our project we had to choose a toolkit for developing the graphical user interface.
Depending on our preferred programming language "Java", we had the choice between Swing and the
Standard Widget Toolkit (SWT). We excluded the Abstract Window Toolkit (AWT) directly because it's older
than the other ones and could not compete in criteria like performance, set of graphical elements and
appearance.

The following chapters show a comparison of the two toolkits on the basis of our predefined criteria.

16.4.2.1 PERFORMANCE

To give a result on this it is necessary to explain the kind of toolkits. Swing is a Lightweight Ul, so Java is
responsible for rendering the graphical components. That means that a Swing Application has always the same
appearance on every kind of operating system. In comparison SWT is a Heavyweight Ul and the appearance of
an SWT Application depends on the underlying operating system. SWT uses the native widget of the operating
system and therefore has the Look & Feel of it. The rendering of the graphical components is done by the
operating system. This tends to the result that SWT has a better performance than Swing.

6.4.2.2 LOOK AND FEEL (APPEARANCE)

As mentioned SWT has the Look&Feel of the underlying operational system, so it looks different on Windows 7
than on Mac OS X. A Swing Application would look the same on both operating systems. We prefer the Look &
Feel of the operational system.

6.4.2.3 PLATFORM INDEPENDENCY

Real platform independency is only given with Swing not with SWT. The API of SWT is independent from the
operational system, but as SWT uses the native graphical components real platform independence is not given
anymore. This means, that it is necessary to deliver special SWT libraries fitting to the operating system. This
isn’t a real problem because SWT supports all common operational systems (as you can see in this download
sectionz).

16.4.2.4 EXPERIENCE

Due to the fact that we are facing enough new unknown areas like the ant-based or voting algorithms, we
prefer choosing a toolkit which we already know. So we don’t need to learn a new one which would take
additional time.

16.4.2.5 OUTCOME

We choose SWT because one of our main goals was a good performance of the Mediator and the Agents. Also
the Look&Feel of the underlying operating system doesn’t confuse users. They know the appearance because
of their daily work. Another point for this decision was that the responsible persons for the graphical user
interface are more familiar with SWT. These benefits overcome the problem described under the point
Platform Independency because it is a deployment problem and not a programming one. Another advantage of
SWT is the possibility of using JFace which will be explained in more detail in the next section. At the beginning
of our project it was not predictable if we were to use JFace.

? http://download.eclipse.org/eclipse/downloads/drops/R-3.5.1-200909170800/index.php#swt

Prototype 36

Software Project WS09/10

6.4.2.6 ADDITIONAL TOOLKITS

On the basis of SWT we searched for additional toolkits which help us creating charts or provide more complex
graphical components than SWT offers.

6.4.2.6.1 CHART TOOLKITS

For drawing charts we found two free available chart libraries. The two are JFreeChart® and SWTChart".
JFreeChart offers a lot more chart types than SWTChart, which can only draw line-, area and bar charts. These
charts are sufficient to our needs, so we decided to use SWTChart, in hope that the familiarization is shorter
than with the huge JFreeChart library.

During the implementation of the Agent Ul we found out that the realization of the chart showing the order of
jobs is not possible with SWTChart. So we extended SWTChart with an own implementation for this type of
chart. Refer to chapter “Resource Capacity Plan by jobs” (6.4.3.3.3.) to see what this looked like in the end.

6.4.2.6.2 JFACE

JFace is a Ul toolkit which is on top of SWT as you can see in the image below. It is implemented to work with
SWT and simplifies common Ul programming tasks.

Eclipse Workbench

JFace

SWT

Illustration 17: JFace in the context of SWT/EcIips.e5

JFace also uses the graphical components of SWT and combines them to more complex components. We used
the component ProgressMonitorDialog to visualize the long running user tasks. There are three actions which
take a longer execution time: registration of the agent, receiving project data and waiting until the negotiation
starts. Illustration 18 shows the ProgressMonitorDialog during the process of waiting for another agent until
the negotiation can start.

-
Progress Information

Waiting for another Megotiator..,

Cancel

%

Illustration 18: ProgressMonitorDialog

® http://www.jfree.org/jfreechart/
4 http://www.swtchart.org/

> http://www.ibm.com/developerworks/java/library/os-ecguil/

Prototype 37

Software Project WS09/10

6.4.3 GUI EXPLAINATION

In this section the GUI is explained step-by-step with each button and function.

6.4.3.1 MEDIATOR CONNECTION
The mediator connection screen is the first thing the user sees when starting the application.

The screen is showing a list of pre-defined mediators (the actual live server and a local server), buttons to add,
edit or remove entries in the list and buttons to close the application or connect to the selected mediator (see
Illustration 19: The mediator connection screen).

=
] AMP - Ant-Based Multi-Agent Project Scheduling EIEIQ
Select a Mediator:
http://tomcat.examer.de/axis2/services/MediatorAgentService (Live Mediator) Add
http://localhost:3080/ axis2/services/MediatorAgentService (Local Mediator)
Edit
Remove
|
Exit Connect

Illustration 19: The mediator connection screen

A click on the “Add” or “Edit” Button will open a dialog to add or edit an entry (see Illustration 20: The add/edit
dialogue)

A ==

Illustration 20: The add/edit dialogue

Clicking on “Connect” will register the agent at the mediator provided. While the mediator is waiting for the
mediator to send the list of available projects, the user will be seeing a status window.

6.4.3.2 PROJECT SELECTION

After successfully retrieving the project list from the mediator, the user will see the project selection screen
(see Illustration 21: Project selection screen).

Prototype 38

Software Project WS09/10

On the left side of the screen the user will see a list of available projects being updated every few seconds. A
list item displays the project name and in brackets the number of connected users and maximum number of
agents for this project. By clicking one of the buttons at the top the user has the possibility to filter the list:

- All projects: All projects will be shown to the user
- None: Only projects with no agents connected will be shown
- One Agent: All projects with one agent connected will be shown

On the top right corner of the view the user has the ability to setup certain factors of a negotiation:

- Voting algorithm: What voting algorithm will be used by both agents during the negotiation
- Negotiation Rounds: How many rounds of negotiations the whole negotiation will take

- Proposals per round: How many proposals will be generated by the mediator in one iteration
- Rate of interest: the rate of interest used by the agent for calculation of the cash value

Right underneath the user can see information about the selected project:

- Project name: The name of the selected project

- Number of Jobs: The number of jobs of the selected projects (including the two “dummy” jobs for
begin and end of a project)

- Number of resources: The number of resources involved in the selected project

At the bottom right of the screen there are two buttons for navigation:

- Join: The user will join a project. If the user is the initiator of a project, he will see a waiting screen
until the second agent has joined the project and negotiation starts
- Back: The user will return to the previous view (see 6.4.3)

r 5
5] AMP - Ant-Based Multi-Agent Project Scheduling |E|E|éj

[All Projects H MNe Agent H One Agent

List of available Projects Voting Algarithm: BORDA -
¥50_110/2) -
X351 (0/2) Megotiation Rounds:
K151 (0/2)
X301 (0/2) Proposals per Round: 10 -
K61 (0/2) Rate of Interest: 1%
X451 (0/2)
¥55_1 (0/2)
X401 (0/2)
X101 (0/2)
ﬁg-i Egg% Project Name:
X601 (0::'2) Mumber of Jobs:
130181 (0/2) Mumber of Resources:
1302_1 (0/2)

13061 (0/2)

130256 1 {0/2) i

lllustration 21: Project selection screen

II
1

m

Prototype 39

Software Project WS09/10

.4.3.3 NEGOTIATION SCREEN

After two agents have successfully joined the same project, they will see the negotiation screen. The
negotiation screen is divided into 4 areas (see Illustration 22: Negotiation view)

Cash Value Chart
Resource-/Capacity Plans
Project Information/Statistics
Status bar

= _
] AMP - Ant-Based Multi-Agent Project Scheduling = [E [

Total Cash Value Project J6038_1
Number of Jobs: 60
Maximum project length: 81 days

o Minimum project length: 76 days
1 Average project length: 82 days

Current project length: 76 days

Maximum Cash Value: 689,03 EUR
Minimum Cash Value: 614,26 EUR

660

EUR

Average Cash Value: 659,33 EUR
Current Cash Value: 683,04 EUR
640 |
Current negotiation runtim 46,00 s
620
Y T T T T T T T T T T
0 5 10 15 2 b5 20 35 4 45 50
Rounds
—— Agent — Mediator -=- Highest Total Cash Value
Allocation Plans | Job Plans
Capacity Plan for Resource
- il
7 - I o
020 :
b4 1 B
3 0 46
= %] . I —
‘3 19 ! ‘:9 lom, " [z 5 40 2 60 ‘ | 61
0 T T T — AL 1 T T T T T T

0 5 10 15 20 25 20 35 40 45 50 55 60 65 70 75 80
Duration
— Ourjobs — Other agent'sjobs

Resourcel | Resource2 | Resource3 | Resourced

Illustration 22: Negotiation view

6.4.3.3.1 CASH VALUE CHART

The cash value chart visualizes the history of the cash value of the negotiation. There are three lines:

- Blue line: The cash value of the favored proposal of the agent
- Green line: The cash value as proposed by the mediator
- Redline: The highest cash value reached in the negotiation so far

On the x-axis you have the rounds and on the y-axis the amount of cash.

You can zoom in/out by double-clicking on the chart with the left/right mouse button.

6.4.3.3.2 RESOURCE CAPACITY PLAN BY ALLOCATION

The resource allocation plan by allocation will visualize how much of the capacity of a resource at the current
point of negotiation at a certain time is being used.

Prototype 40

Software Project WS09/10

6.4.3.3.3 RESOURCE CAPACITY PLAN BY JOBS

The resource capacity plan by jobs will visualize at what time a certain resource will start what job at what
duration and how much capacity it will be using for it.

6.4.3.3.4 STATISTICS / INFORMATION

At the top right screen information and statistics about the project can be seen:

- Number of Jobs: The number of jobs of the project being negotiated

- Minimum/Maximum/Average/Current Cash value: Statistical information about the cash value

- Minimum/Maximum/Average/Current project length: Statistical information about the project span
- Current negotiation runtime: The runtime of the negotiation (in seconds)

16.4.3.4 RESULT VIEW

After successful completion of a negotiation, the user will see the Result View (see lllustration 23: Result view)

& AMP - Ant-Based Multi-Agent Project Scheduling SRR X

Information about winning proposal for Project J6038_1

Total Cash Value: 639,13 Winner Project Duration: 76
Minimum Cash Value: 608,36 Minimum Project Duration: 76
Maximum Cash Value: 63913 Maximum Project Duration: a
Average Cash Value: 54884 Average Project Duration: 80

Total Cash Value | Allocation Plans | Job Plans|

Total Cash Value

680

660

UR

o
640 -

620 -

T
0 5 10 15 20 25 30 35 40 45 50

Rounds
—— Agent —— Mediator --- HighestTotal CashValue
Save Results To File] [New Negotiation] (Exit Amp

Illustration 23: Result view
On the top of the screen the user will see numerical statistics (cash value and project duration).

In the middle, the user has the possibility to take a look at the cash value chart, the allocation plans or the job
plans (allocation and job plans can be looked at for each resource itself).

At the bottom the user has the possibility to:

- Save results to database
- Save the results to file

- Start a new negotiation
- Exit AMP

Prototype 41

Software Project WS09/10

7 RESULTS

We have been able to fulfill all requirements of the project. Our final solution does come up with very good
results for the given problem data by Fink.

Applying our algorithms to exemplary problem data of Fink, we obtained the following results as can be seen
on Chart 1: Results of AMP compared to Fink.

The values in green are the solutions provided by Fink. In red you will see the results from our solution.

It can be obtained that we have been able to come up with exactly the same results on our distributed system
as Fink for the 30s projects.

For the 60s and 120s projects we obtained results differing from 1,8% - 16,3% worse than Fink on our
distributed system.

For detailed evaluations of our solutions please see Chapters 7.1 - 7.5.

#
Instance Of Jobs

J302_1 32
J602_1 62
X35_1 122
J3010_1 32
X55_1 122
J6018_1 62

Chart 1: Results of AMP compared to Fink

Results 42

7.1

Given:

PROBLEM J302 APPROACH 1

Number of rounds: 5000
Proposals per round: 20
Voting Algorithm: Borda
Update Rule: Unit=1.0

Results:

Agent 1 cash value result:
o 647,85
Agent 2 cash value:
o 571,26
Total cash value:
o 1219,11
Runtime in seconds:
o 86,66
Best total cash value:
o Round 370
o 1219,11

Software Project WS09/10

1225

1220

1215

1210

1205

1200

1195

1190

TCV Sum

158
315
472
629
786
943
1100
1257
1414
1571
1728
1885
2042

2199
2356
2513
2670
2827
2984
3141
3298
3455

3612

3769
3926
4083

4240
4397

4554
4711

4868

Chart 2:J302 Approach 1 TCV Sum

Results

43

Software Project WS09/10

TCV Agentl

650
648
646
644
642
640
638
636
634
632
630

598Y
€TLY
T95Y
6017
LSCY
SOty
€396¢
T08¢
6v9¢
L6VE
Svee
€61¢e
1474013
688¢
LELT
T4
123744
18¢¢
6¢T¢C
LL6T
S¢81
€91
Test
69€T
LTCT
S90T
€16

19L

609

LSV

S0€

€qT

Chart 3:J302 Approach 1 TCV Agent 1

TCV Agent2

574
572
570
568
566
564
562
560
558
556
554

S598Y
ETLY
T9sv
607y
LSCY
SOTY
€96¢€
T08¢
6¥79¢
A %3
Svee
€61¢
Tvoe
688¢
LELT
§84¢
EEVC
18¢¢
6¢T¢C
LL6T
S¢8T
€91
TeSt
69¢T
LTCT
S90T
€16

194

609

LSy

SO€

€qt

Chart 4: J302 Approach 1 TCV Agent 2

44

Results

7.2 PROBLEM J302 APPROACH 2

Given:

e Number of rounds: 5000
e Proposals per round: 20
e Voting Algorithm: Borda

Software Project WS09/10

e Update Rule: update unit=4 - linear influence factor 80%==1

Results:

e Agent 1 cash value:

o 647,85

e Agent 2 cash value:
o 571,26

e Total cash value:
o 1219,11

e Runtime in seconds:
o 77,32

e Best total cash value:
o Round 310
o 1219,11

1225

TCV Sum

1220

1215

1210

1205

1200

1195

1190

1185

1180

158
315
472
629
786
943
1100
1257
1414
1571
1728
1885
2042

2199
2356
2513
2670
2827
2984
3141
3298
3455

3612

3769
3926
4083

4240
4397

4554
4711

4868

Chart 5:J302 Approach 2 TCV Sum

Results

45

Software Project WS09/10

TCV Agentl

650
648
646
644
642
640
638
636
634
632
630

598Y
€TLY
T95Y
6017
LSCY
SOty
€396¢
T08¢
6v9¢
L6VE
Svee
€61¢e
1474013
688¢
LELT
T4
123744
18¢¢
6¢T¢C
LL6T
S¢81
€91
Test
69€T
LTCT
S90T
€16

19L

609

LSV

S0€

€qT

Chart 6: J302 Approach 2 TCV Agent 1

TCV Agent2

575
570
565
560
555
550
545

S598Y
ETLY
T9sv
607y
LSCY
SOTY
€96¢€
T08¢
6¥79¢
A %3
Svee
€61¢
Tvoe
688¢
LELT
§84¢
EEVC
18¢¢
6¢T¢C
LL6T
S¢8T
€91
TeSt
69¢T
LTCT
S90T
€16

194

609

LSy

SO€

€qt

Chart 7:J302 Approach 2 TCV Agent 2

46

Results

7.3

Given:

Results

Software Project WS09/10

PROBLEM J602

Number of rounds: 10000

Proposals per round: 50

Voting Algorithm: Borda

Update Rule: update unit=150 --> influence 80%==1

Agent 1 cash value:
o 803,79

Agent 2 cash value:
o 887,83

Total cash value:
o 1691,62

Runtime in seconds:
o 890,2

Best total cash value:
o Round 1009
o 1700,86

1710

1700

1690 :

1670

1660

1650

1640

1630

1620

1610

TCV Sum

1680 '

314

627

940
1253
1566
1879
2192
2505
2818
3131
3444
3757
4070
4383
4696
5009
5322

5635

5948
6261

6574
6887

7200
7513

7826

8139
8452

8765
9078

9391
9704

Chart 8: 602 TCV Sum

Results

47

Software Project WS09/10

TCV Agentl

820

o
—
0

800

790

780

770

760

750

6¢L6
Sev6
T¢T6
L188
€158
60¢8
S06L
T09L
L6CL
€669
6899
S8€9
1809
LLLS
€LVS
6919
598y
T95Y
LSCY
€596¢€
6v9¢
1433
Tv0€
LELT
133744
6¢TC
S¢81
Test
LTCT
€16

609

S0¢

Chart 9:J602 TCV Agent 1

TCV Agent2

910

900

890
880
870

860

850

840

830

820

6CL6
SCv6
T¢T6
L188
€158
60¢8
S06L
T09L
L6CL
€669
6899
S8€9
1809
LLLS
ELVS
6919
S98Y
T9sY
LSCy
€96¢
6¥79¢
Svee
o€
LELT
133744
6CTC
§¢8T
TeSt
LTCT
€16

609

[0}

Chart 10: J602 TCV Agent 2

48

Results

7.4

Given:

Results

PROBLEM X35 APPROACH 1

Number of rounds: 15000
Proposals per round: 100
Voting Algorithm: Borda
Update Rule: update unit=80

Agent 1 cash value:
o 1388,78

Agent 2 cash value:
o 1366,38

Total cash value:

o 2755,16
Runtime in seconds:
o 6551,63
Best total cash value:
o Round 408

o 2759,45

Software Project WS09/10

2800

2750

2700

2650

2600

2550

2500

2450

TCV Sum

470
939
1408
1877
2346
2815

3284
3753
4222

4691

5160
5629

6098
6567
7036
7505
7974
8443

8912

9381
9850

10319

10788
11257

11726
12195

12664
13133

13602
14071

14540

Chart 11: X35 Approach 1 TCV Sum

Results

49

Software Project WS09/10

TCV Agentl

1420

1400

1380

1360

1340

1320

1300

1280

1260

1240

1220

1200

orsrT
TL0VT
C09¢T
EETET
9971
S6TCT
9¢/11
LSCTT
8801
61¢€0T
0586
18€6
168
Evv8
vi6L
S0SL
9€0L
£999
8609
6795
091§
T69v
[4447
€G/L¢E
v8¢e
S18¢
1434
LL8T
80VT
6€6
(VA7

Chart 12: X35 Approach 1 TCV Agent 1

TCV Agent2

1400

1380

1360

1340

1320

1300

1280

1260

ovsvT
T/0VT
¢09¢T
€ETET
79971
S6TCT
9¢/L1T
LSCTT
88/0T
61€0T
0586
18€6
168
Evr8
vi6L
S0SL
9€0L
L9599
8609
699
091§
T69¥
[4447
€GL€
v8ce
S18¢
9r€T
LL8T
8071
6€6
0Ly

Chart 13: X35 Approach 1 TCV Agent 2

50

Results

Software Project WS09/10

7.5 PROBLEM X35 APPROACH 2

Given:

e Number of rounds: 15000

e Proposals per round: 100

e Voting Algorithm: Borda

e Update Rule: update unit=15000 --> influence 80%==1

Results:

e Agent 1 cash value:

o 138091

e Agent 2 cash value:
o 1396,58

e Total cash value:
o 2777,48

e Runtime in seconds:
o 7025,82

e Best total cash value:
o Round 1203

o 2790,75
TCV Sum
2850
2800
2750 -
2700
2650
2600
2550
2500
2450
2400
T OO0 N OUIN M AN-HOOOTON OINT M ANACHOOOMN O NS MmO AN O
N OO NS d0 N AN OO ANOOODOUMONS Td00WN 40N ANOOOMOIN
T O T O MO ANNN O dOOINMOMOSSOOOMOOMONNANNCEH O-HOO W
A EH AN AN OONDN T TN O ONNNOOOOOODOGOOOHA-EHANANMOMOMS <
™ A A

Chart 14: X35 Approach 2 TCV Sum

Results

Software Project WS09/10

TCV Agentl

1450

1400 -

1350

1300

1250

1200

1150

orsrT
TL0VT
C09¢T
EETET
9971
S6TCT
9¢/11
LSCTT
8801
61¢€0T
0586
18€6
168
Evv8
vi6L
S0SL
9€0L
£999
8609
6795
091§
T69v
[4447
€G/L¢E
v8¢e
S18¢
1434
LL8T
80VT
6€6
(VA7

Chart 15: X35 Approach 2 TCV Agent 1

TCV Agent2

1420

1400 -

1380 -

1360

1340

1320

1300

1280

1260

1240

ovsvT
T/0VT
¢09¢T
€ETET
79971
S6TCT
9¢/L1T
LSCTT
88/0T
61€0T
0586
18€6
168
Evr8
vi6L
S0SL
9€0L
L9599
8609
699
091§
T69¥
[4447
€GL€
v8ce
S18¢
9r€T
LL8T
8071
6€6
0Ly

Chart 16: X35 Approach 2 TCV Agent 2

52

Results

Software Project WS09/10

8 PERFORMANCE MEASUREMENTS

To get a better feeling about how the Agent behaves in different scenarios and how resource consumption is,
we decided to test the performance of the Agent. The performance test is divided into two parts. The first part
concentrates on system measurements like CPU or memory consumption. The second part looks deeper into
the procedures going on within the Agent, where it is measured how long a certain method needs to be
executed. These measurements were taken using the Monitoring tool inspectIT6 from NovaTec GmbH. As some
of our team members are working in the inspectIT development team, it was possible to use this tool.

8.1 SYSTEM MEASUREMENTS

8.1.1 CPU

This section shows the CPU work load of the JVM during different phases.

58.1.1.1 CPU LOAD WHEN IDLING

Normal CPU load where the Agent is just looking at available projects.

{iii CPU Information inspectT] 3]

oo

90

80

70

60

50

CPU usage of the ¥

40

30

20

nm 02 AL 1104 1108 1108 R 1108 1109 1170 1

CcPU

Cpu Usage: 6,56 % Process Cpu Time: 16,66 5

Illustration 24: CPU load when idling

6 http://www.inspectit.eu/

Performance Measurements 53

Software Project WS09/10

8.1.1.2 CPU LOAD DURING A NEGOTIATION WITH 30 JOBS

As shown in the picture there is only little load when a negotiation with 30 jobs is performed.

fiif CPU Information inspectit =Py

100

40

g0

70

60

50

CPU usage of the v

40

30

20

11:08 11:09 1110 1111 112 1113 11:14 11:15 11:16 11:17 11:18

cpu

Cpu Usage: 4,25 % Process Cpu Time: 4541 s

Illustration 25: CPU load during a negotiation with 30 jobs

Performance Measurements 54

Software Project WS09/10

8.1.1.3 CPU LOAD DURING A NEGOTIATION WITH 120 JOBS

Like before, there is only little load when a negotiation with 120 jobs is performed, because the most work is
done on the Mediator.

il CPU Information inspectt =[P

100 4

90
a0
S — SN SN TR NN S SN S— SN SN T |
1]

50

CPU usage of the WM

40

30

20

mnn 112 113 11:14 1115 116 a7 118 1118 11:20 11:21

CPU

Cpu Usage: 0% Process Cpu Time: 55,08 5

Illustration 26: CPU load during a negotiation with 120 jobs

Performance Measurements 55

Software Project WS09/10

8.1.2 CLASS LOADING

This section shows how many classes were loaded/unloaded during all phases of the Agent. As shown in the
below picture there were around 1600 initially loaded classes. This number has grown during the different
phases of the Agent, because the JVM loads needed classes on demand. Eventually there were around 2500
loaded classes which is a normal behavior.

® Class Loading Information inspectT [@[E]@

26004
2500
2400+
23001
2200
21001
2000
1900 1
1800
1700
16001
15001
1400
13001
1200
11001
1000
300
800
700
600
500
400
300
200
100

0

Classes

11:m 1102 11:03 11:04 11:08 11:06 11:07 11:08 11:.08 11:10 111

Classes

Current loaded classes: 2472 Total loaded classes: 2.508

Total unloaded classes: 36

Illustration 27: Class loading

Performance Measurements 56

Software Project WS09/10

8.1.3 MEMORY

This section shows some memory work load of the JVM during different phases.

8.1.3.1 MEMORY LOAD WHEN IDLING

The below picture shows the memory consumption when the Agent was idle and doing nothing.

== Memory Information inspectT =[Py

£5.000 |
50000 ||
55.000 1|
50.000 1|
45.000 1|
£ 40000 ||
Z 35000
S 30,0001

4
T 25000 1
IR Py S P s COUGDUL CUUDDTS U BUDUY S DU TS SRS SRR B —v“‘N

o
15.000 1
10.000 7
5.000 1)
o

40.000 1

g0.000 7

70.000

60.000 <

t 40000 7

Mon-heap / kbytes
m
Z
f==]
{=]
2

30.000 ||
20.000 1| P,

10.000 r

n-

11:02 11:03 11:04 11:08 11:06 1107 11:.08 11:09 1110 11:11 11:18

Memory

Max heap size: 65.088 kB Max non-heap size: 98.304 kB
Total physical memory: 2.087.151 kB Total swap space: 4.194.303 kB
Free physical memony: 1.350.244 kB Free swap space: 3.289.842 kB
Committed heap size: 28632 kB Committed non-heap size: 17.184 kB
Used heap size: 25601 kB Used non-heap size: 17.098 kB

Illustration 28: Memory load when idle

Performance Measurements 57

Software Project WS09/10

8.1.3.2 MEMORY LOAD DURING A NEGOTIATION

The consumption of the memory grows and shrinks when the Agent is within a negotiation, but this behavior is
constant no matter whether a project with 30 or 120 jobs is selected.

== Memory Information inspectlt [E]@

#5.000
£0.000|
55,000 |
50.000{|
450001
£ 40,000
= as000{|
S 300001
g
T 250001
20000
15.000{|
10000{|
5000 |
0

40.0001)
20.0007 ¢
700001
60.0007"
500001

40.0007 7

Mon-heap / kbytes

300001

20.0007 ¢ — P A PP P

100001

11:08 11:09 11:10 11:11 1112 11:13 11:14 1115 1116 1117 1118

Memory

Max heap size: 65.088 kB Max non-heap size: 98.304 kB
Total physical memory: 2097151 kB Total swap space: 4194303 kB
Free physical memony: 1.281.263 kB Free swap space: 3234304 kB
Committed heap size: 33.788 kB Committed non-heap size: 17.568 kB
Used heap size: 200033 kB Used non-heap size: 17.443 kB

Illustration 29: Memory load during a negotiation

Performance Measurements 58

Software Project WS09/10

8.1.4 THREADS

This section shows how many Threads where started during different phases. As there were not much more
Threads launched in the negotiation phase, this section has just one overview picture.

&2 Thread Information inspectT =[P

15
14 mﬂmmmnuw

Threads
o

Daemon threads

1102 11:03 11:04 11:05 11:06 11:.07 11:08 11:09 11:10 11:11 1112

Threads

Live threads: 14 Daeron threads: g
Peak: 15 Total threads started: 17

Illustration 30: Overview over threads

Performance Measurements 59

Software Project WS09/10

8.1.5

SYSTEM INFORMATION

This section shows some general information about the JVM where the Agent is running in.

@ System Information inspectT

M

Vendor:

Process Id:

Jit Compiler Name:
Total compile time:

Process Cpu Time:
Operating System

Operating System:
Architecture:

Memaory

Max heap size:

Total physical memory:

Free physical memory:
Committed heap size:

Used heap size:

Classes

Current loaded classes:

Total unloaded classes:

Threads

Live threads:
Peak:

~ Class Path

Class path:
Agent.jar]

My Documents\DevelopmentiinspectiT\Agent\novaspy-agent.jar

Boot class path:
C

Sun Microsystems Inc.
5368

HotSpot Client Compiler
094 s

1302s

Windows 7 6.1
i)

65,088 kB
2087151 kB
1471.291 kB
26,604 kB
19.700 kB

2358
27

14
14

“Program Files\Java\jreb\lib\resources.jar;C
“Program Files\Java\jreb\lib\rt.jarnC
“Program Files\Java\jred\lib\sunrsasign.jarC
“Program Files\Java\jred\lib\jssejar;,C
“Program Files\Java\jreb\lib\jce.jarC
“Program Files\Java\jre\lib\charsets.jarn C
\Program Files\Java\jref\classes

Version:
Pc Mame:
Specification Name:

Uptirne:

Ayvailable processors:

Max nen-heap size:

Total swap space:

Free swap space:
Committed non-heap size:

Used non-heap size:

Total loaded classes:

Daemon threads:
Total threads started:

141-b02

nastra-PC l}

lava Virtual Machine Specification
0d0h7m 585

98304 kB
4194303 kB
3.384.351 kB
16.032 kB
15750 kB

2,385

15

| »

m

Illustration 31: General system information

Performance Measurements

60

Software Project WS09/10
8.2 TIMER MEASUREMENTS

This section contains some Timer measurements from different methods that were called. The Timer gives a
feeling how long it takes to execute a specific method. Therefore it is possible to discover methods that have
long execution times which can later be re-factored and improved. As our focus was to also have a high-
performance implementation of the Agent, there were fortunately no methods discovered which have a long
execution time.

8.2.1 JOINING A PROJECT

The below picture shows that just one method is called when a project is joined.

@ Timer |5ﬁ Invocation Sequences (Show All) |® Tirmer w =L

Q inspec’rIT joinProject(int, int, int, int, String) - de.hft_stuttgart.sopro.agent.remote.MediatorAgentServiceWrapper [E]@

160
150
140
130
120
110
100

an

g0

ms

70
60
a0
40
a0
20
1

Count

11:05 11:08 11.07 11:08 11.09 11:10 11:1 11:12 11:13 11:14 11:15

Count Avg (ms) Min (ms) Max (ms) Duration (ms)
157,321 157,321 157,321 157,321

Illustration 32: Joining a project

Performance Measurements 61

Software Project WS09/10

8.2.2 RETRIEVING PROJECT CHANGES

To be able to retrieve changes in all the projects, each Agent asks the Mediator every five seconds for changes.
In this case a change is when for example an Agent joins a project. As shown in the below picture the execution
time of this method is in average around 90 milliseconds. This is because of the network delay.

9 Timer |ia Invocation Sequences (Show All) |@ Timer I@ Timer &2 l =0

@ inspectIT ieveProjectCh (List) - de.hft. sopro.agent.remate.MediatorAgentServiceWrapp =] P[]

273

250 ...

200
175
£ 150
125
100

7

a0

25

Count

11:03 11:04 11:05 11:08 11:07 11:.08 1109 1110 111 1112 11:13

Count Avg (ms) Min (ms) Max (ms) Duration (ms)
80 91,307 63,972 284,677 7304,587

Illustration 33: Retrieving project changes

Performance Measurements 62

Software Project WS09/10

8.2.3 UPDATING THE PROJECTVIEW

When there are changes, the ProjectView needs to be updated and the corresponding components need to be
redrawn. The average is about 5 milliseconds which is a very good value and is also the benefit of SWT as the
selected Ul framework.

9 Tirmer |iﬁ Invocation Sequences (Show All) |® Timer [@ Timer &3 l =E

@ inspectlT wp iew() - de.hft_ sopro.agent.gui.view.ProjectViewSProjectViewRefresher @ [EQES

100

ms
o
[}

Count

11:04 11:05 11:06 11.07 11:08 11.09 11:10 11 1112 11:13 11:14

Count Avg (ms) Min (ms) Max (ms) Duration (ms)
n 5129 3124 44 417 364,154

Illustration 34: Updating the project view

Performance Measurements 63

Software Project WS09/10

8.2.4 UPDATING THE NEGOTIATIONVIEW

The behavior of the update mechanism of the NegotiationView is like that of the ProjectView. The average is
about 5 milliseconds for redrawing corresponding components.

@ Timer ‘ﬁ Invocation Sequences (Show All} | ® Class Loading |- Memaory |@ Threads |9 Timer [@ Timer 22 l =8
Lg

@ inspectlT updateView(IProposal, IProposal) - dehft_ sopro.agent.guiview.NegotiationView @[EQE!

200
180
180
170
180
150
140
130
120
110
100
a0
a0
70
B0
a0
40
30

20 :
10
0lhanaa Aanaanad Voo —

11:13 11:14 1115 1116 11:17 11:18 11:19 11:20 11:21 1122 11:23

ms

Count

Count Avg (ms) Min {ms) Max (ms) Duration (ms)
94 0,006 194,586 436,673

Illustration 35: Updating the NegotiationView

Performance Measurements 64

Software Project WS09/10

8.2.5

RETRIEVING PROPOSALS FOR 30 JOBS

During a negotiation, each Agents asks the Mediator for new proposals. Depending on the size of the project

the Agent is participating in, this retrieval can have a higher execution time, because the proposals are
generated on the Mediator and then sent over to the Agent. The below picture shows the retrieval of proposals
for a project with 30 jobs. The average retrieve time is about 3 seconds for each round of a negotiation.

1) inspectT
File License Help

ST

([ﬁ localhost : 8080

@ Timer

|5 1nvocation Sequences (show All

| cpu

|@ Class Loading

=% Memory

&2 Threads

@ Timer 52 |

4 [inspectT
4] Instrumentation Browser
b B denft_stuttgart.sopro.agent.gui
b B denft_stuttgart.sopro.agent.qui
4 B dehft_stuttgartsopro.agent.rerr,
4 ©® MediatorAgentServiceWrapg,
4 @ gethvailableProjects()
@ Timer
joinProject(int, int, int, in
@ Timer
leaveProject(int, int)
registerAgent()
retrievePaymentDataForf
retrieveProjectChange(ds
retrieveProjectChanges(ji
Timer

4 9

A v oYW
LI BN)

4 @ retrieveProposals(int, int)
@ Timer|
» @ setProposalsEvaluationP(
» @ setProposalsWithScore(ir|
» @ unregisterAgent(int)
4 55 Invocation Sequences
Show All
&, Search
1> B Browser
1 & SQL Statements
a [System Overview
il cru
© Classes
== Memory
&8 Threads
@ VM Summary
4 ‘D) Exception Tracer
- Exception Tree
® Exception Overview
£ Combined Metrics

@ inspect!T retrieveProposals(int, int) - de.hft_stuttgart.sopro.agent.remote.MediatorAgentServiceWrapper

ms

4.000
3.750
3.500
3.250
3.000
2.750
2.500
2.250
2.000
1.750
1.500
1.250
1.000

750

500

230

s

(

|

|

l

11:10

1mn

1112

1113

1114 11:15 1116

1107

11:18 11:18 11:20

Count
125

Avg (ms)
2826899

Min (ms)
1714,220

Max (ms)
393,692

Duration (ms)
353362324

Illustration 36: Retrieving proposals for 30 jobs

Performance Measurements

65

Software Project WS09/10

8.2.6

RETRIEVING PROPOSALS FOR 120 JOBS

Like described in the previous section, the retrieval of new proposals strongly depends on the size of the
project. The below picture shows that the average time is about 5 seconds for retrieving the proposals for a
project with 120 jobs.

2 Invocation Sequences (Show All)

‘0 Timer [Q Timer 2 l l} -

@ inspectIT retrieveProposals(int, int) - de.hft_ sopro.agent.remote.MediatorAgentServic

ms

14.000

PP @@y

13.000

12.000

11.000

10.000

9.000

8.000

5.000

4.000

3.000

2.000

1.000

0

3

|

Count

Hm (RN R TR

11:18

11:17

11:18 11:18 1120 1121 1122 11:23 11:24 11:25 1128

Count
70

HAvg (ms)
5630,194

Min (msz)
1714,229

Max (ms) Duration (ms)
13358,886 394113601

Illustration 37: Retrieving proposals for 120 jobs

Performance Measurements

66

Software Project WS09/10

8.2.7

SENDING THE EVALUATED POINTS - 30 JOBS

When an Agent retrieves new proposals, he performs the voting based on the selected voting algorithm and
sends the evaluated points to the Mediator. The case for a project with 30 jobs is shown in the below picture.

9 Timer

‘sﬁ Invocation Sequences (Show All} |* CPU | ® Class Loading |- Memary

&% Threads [@ Timer &2 l = E

@ inspectIT setProposalsEvaluationPeints(int, int, List) - de.hft. opro.agent.remote. MediatorAgentServiceWrapp =ERU

w
=

4501 [:
R —Na-a——a- it i i i i
4n0+|
375 |
3501
a00 ||
2751|
250 1|
2251 |
2001 |
1751 |
1501
1251
1001
75|
50|
251|

Count

11:10 111 11:12 11:13 11:14 11:15 1118 11:17 11:18 11:19 11:20

Count
125

HAvg (ms) Min {ms) Max (ms) Duration (ms)
157,168 116,366 433,522 19646,02

Illustration 38: Sending the evaluated points - 30 jobs

Performance Measurements 67

Software Project WS09/10

8.2.8 SENDING THE EVALUATED POINTS — 120 JOBS

The below picture shows the sending of the evaluated points for a project with 120 jobs. The average times for
sending the evaluated points are nearly equal to a project with 30 jobs.

2 Invocation Sequences (Show All) [@ Tirner &2 l =0

PP @@

@ inspectIT setProposalsE ints(int, int, List) - de.hft_ sopro.agent.remote.MediatorAgentServic

450 i
495 b
400
373
3580
IR B
300
273
250
ool
200
175
150
125
100
75
g0
25

Count

i

i

1116 11:17 11:18 11:19 11:20 11:21 11:22 11:23 11:24 11:25 11:26
Count Auvg (ms) Min (ms) Max (ms) Duration (ms)
155,044 116,366 433,522 9767,794

Illustration 39: Sending the evaluated points - 120 jobs

Performance Measurements 68

Software Project WS09/10

9 CONCLUSION

The project team has shown that it has been able to create a solution to handle the multi-agent project-
scheduling problem in a distributed system. Additionally, the team was able to utilize ant-based algorithms for
the evaluation of the solutions.

This solution approach was unique in its way and opened the door for further studies in this area.

Due to restrictions in time and resources, we have only been able to implement a limited number of
algorithms. The code-design was chosen in a way that it is easy to add new voting algorithms for the agents
without huge modifications of the source code.

Also it is possible to enhance the code to support different ant-algorithm approaches.

The update of the pheromone matrix can be modified to evaluate the effects of modifications on the results
and to therefore improve the solution quality.

Furthermore, the project could be enhanced to support more than two agents negotiating at the same time.

It is very important to know that our software solution will have to be modified if it should be used in a
productive, real-time environment. If our solution should be used in a commercial environment, additional
features would have to be taken into account. These include for example authentication, secure channels of
transportation and a service concept.

Every team member has enjoyed working on the project and learned a lot by doing so. For the team members
it has been a rich experience working in a team of this size and programming on code collaboratively. Everyone
has been able to enhance their experience in the field of programming.

The team was very motivated and showed this by performing weekly team meetings, regular meetings with the
professor and by sticking to the project plan at all times.

The project has been a success, as for the whole team and for the team members themselves.

Conclusion 69

Software Project WS09/10

10 APPENDIX

10.1 SOURCES

1. Homberger. Antsintroduction. Blackboard HFT : s.n.

2. Merkle, D., Middendorf, M. and Schmeck, H. Ant colony optimization for resource-constrained project
scheduling. EC. 2002, pp. 333-346.

3. Cognitzer, V. and Sandholm, T. Communication complexity of common voting rules. EC. 2005, pp. 78-87.

Appendix 70

	Introduction
	Problem
	Cash Value
	Resource Constraints
	Problem Instances by Fink

	Goals
	Approach
	Explanation pheromone matrix

	Project Team

	Requirements
	Business Requirements
	Feasible Schedule
	Solution Quality
	Graphical User Interface
	Benchmarking capabilities

	Technological Requirements
	Distributed System
	Platform
	Hardware Requirements

	Solution Concept and Draft
	Business Solution Elements
	Feasible Schedule
	Solution Quality
	Graphical User Interface
	Benchmarking Capabilities

	Technological Solution Elements
	Distributed System
	Platform
	Hardware
	Web Service Framework

	Team Project Plan

	Architecture
	Software Architecture
	UML Class Diagrams
	Agent
	Mediator
	Common Layer

	UML Sequence Diagram

	System Architecture

	Development Environment
	Tools and Versions of used software
	Operating System
	Project Management
	Version Control
	Continuous Integration
	Automated builds / Automated Testing
	Application Server

	Enabling the Web Access

	Prototype
	Infrastructure
	Algorithms
	General Ant Algorithm
	Proposal Generation
	Serial Schedule Generation Scheme SSGS

	Voting Algorithms
	Scoring Rule
	Borda
	Plurality
	Approval
	Copeland
	Conclusion

	Ant Colony Optimization AOC – ADaptation Rule
	Improven pheromone matrix update
	Pheromone matrix example

	Distributed System
	Architecture of the Distributed System
	Description of the service methods
	Description of the mediator components
	Description of the agent components

	Agent
	Specification / Design
	Implementation
	Performance
	Look and Feel (appearance)
	Platform Independency
	Experience
	Outcome
	Additional Toolkits
	Chart Toolkits
	JFace

	GUI Explaination
	Mediator Connection
	Project Selection
	Negotiation Screen
	Cash Value Chart
	Resource Capacity Plan by allocation
	Resource Capacity Plan by jobs
	Statistics / Information

	Result View

	Results
	Problem J302 approach 1
	Problem J302 approach 2
	Problem J602
	Problem X35 Approach 1
	Problem X35 Approach 2

	Performance Measurements
	System Measurements
	CPU
	CPU load when idling
	CPU load during a negotiation with 30 jobs
	CPU load during a negotiation with 120 jobs

	Class Loading
	Memory
	Memory load when idling
	Memory load during a negotiation

	Threads
	System Information

	Timer Measurements
	Joining a project
	Retrieving project changes
	Updating the ProjectView
	Updating the NegotiationView
	Retrieving proposals for 30 jobs
	Retrieving proposals for 120 jobs
	Sending the evaluated points – 30 jobs
	Sending the evaluated points – 120 jobs

	Conclusion
	Appendix
	Sources

