

SSSoooffftttwwwaaarrreee PPPrrrooojjjeeecccttt

DDDooocccuuummmeeennntttaaatttiiiooonnn

“““AAAMMMPPP”””

Ant-Based Multi-Agent Project-Scheduling

Winter Term 09/10

Supervisor

Prof. Jörg Homberger

Project Team

Sandro DeGiorgi

Frank Erzfeld

Matthias Huber

Jhumi Kanungo

Annemarie Meißner

Eduard Tudenhöfner

 Software Project WS09/10

 2

CONTENTS

1 Introduction ... 6

1.1 Problem ... 7

1.1.1 Cash Value ... 7

1.1.2 Resource Constraints ... 8

1.1.3 Problem Instances by Fink ... 8

1.2 Goals .. 8

1.3 Approach ... 9

1.3.1 Explanation pheromone matrix ... 9

1.4 Project Team .. 11

2 Requirements ... 12

2.1 Business Requirements .. 12

2.1.1 Feasible Schedule .. 12

2.1.2 Solution Quality ... 12

2.1.3 Graphical User Interface .. 12

2.1.4 Benchmarking capabilities ... 12

2.2 Technological Requirements .. 12

2.2.1 Distributed System .. 12

2.2.2 Platform .. 12

2.2.3 Hardware Requirements .. 12

3 Solution Concept and Draft .. 13

3.1 Business Solution Elements .. 13

3.1.1 Feasible Schedule .. 13

3.1.2 Solution Quality ... 13

3.1.3 Graphical User Interface .. 13

3.1.4 Benchmarking Capabilities ... 14

3.2 Technological Solution Elements .. 14

3.2.1 Distributed System .. 14

3.2.2 Platform .. 14

3.2.3 Hardware .. 15

3.2.4 Web Service Framework .. 15

3.3 Team Project Plan .. 15

4 Architecture ... 17

4.1 Software Architecture .. 17

4.1.1 UML Class Diagrams .. 17

4.1.2 UML Sequence Diagram .. 21

4.2 System Architecture ... 22

5 Development Environment ... 23

5.1 Tools and Versions of used software .. 23

5.2 Operating System... 24

5.3 Project Management ... 24

5.4 Version Control .. 24

5.5 Continuous Integration .. 24

5.5.1 Automated builds / Automated Testing ... 24

 Software Project WS09/10

 3

5.5.2 Application Server ... 24

5.6 Enabling the Web Access ... 24

6 Prototype ... 25

6.1 Infrastructure ... 25

6.2 Algorithms ... 25

6.2.1 General Ant Algorithm ... 25

6.2.2 Proposal Generation .. 26

6.2.3 Voting Algorithms .. 27

6.2.4 Ant Colony Optimization AOC – ADaptation Rule ... 29

6.2.5 Improven pheromone matrix update ... 30

6.2.6 Pheromone matrix example .. 30

6.3 Distributed System ... 31

6.3.1 Architecture of the Distributed System .. 31

6.3.2 Description of the service methods ... 32

6.3.3 Description of the mediator components .. 32

6.3.4 Description of the agent components .. 33

6.4 Agent ... 34

6.4.1 Specification / Design .. 34

6.4.2 Implementation ... 36

6.4.3 GUI Explaination .. 38

7 Results .. 42

7.1 Problem J302 approach 1 ... 43

7.2 Problem J302 approach 2 ... 45

7.3 Problem J602 ... 47

7.4 Problem X35 Approach 1.. 49

7.5 Problem X35 Approach 2.. 51

8 Performance Measurements .. 53

8.1 System Measurements ... 53

8.1.1 CPU ... 53

8.1.2 Class Loading ... 56

8.1.3 Memory... 57

8.1.4 Threads ... 59

8.1.5 System Information ... 60

8.2 Timer Measurements ... 61

8.2.1 Joining a project .. 61

8.2.2 Retrieving project changes .. 62

8.2.3 Updating the ProjectView .. 63

8.2.4 Updating the NegotiationView .. 64

8.2.5 Retrieving proposals for 30 jobs .. 65

8.2.6 Retrieving proposals for 120 jobs... 66

8.2.7 Sending the evaluated points – 30 jobs.. 67

8.2.8 Sending the evaluated points – 120 jobs .. 68

9 Conclusion .. 69

10 Appendix .. 70

10.1 Sources .. 70

 Software Project WS09/10

 4

 ILLUSTRATIONS

Illustration 1: Simplified example of a collaborative project plan .. 7

Illustration 2: Pheromone-example / ants dealing with an obstacle .. 9

Illustration 3: Pheromone-example / ant arrives at destination .. 10

Illustration 4: Pheromone-example / ants returning back home ... 10

Illustration 5: Pheromone-example step 4 .. 10

Illustration 6: Agent class diagram .. 18

Illustration 7: class diagram of the Mediator ... 19

Illustration 8: Class diagram of the CommonLayer .. 20

Illustration 9: UML Sequence Diagram .. 21

Illustration 10: System architecture .. 22

Illustration 11: Infrastructure .. 23

Illustration 12: Architecture of the distributed system .. 31

Illustration 13: Draft of the mediator connection screen ... 34

Illustration 14: Draft of the project selection screen ... 34

Illustration 15: Draft of the negotiation screen ... 35

Illustration 16: Draft of the result screen... 35

Illustration 17: JFace in the context of SWT/Eclipse... 37

Illustration 18: ProgressMonitorDialog.. 37

Illustration 19: The mediator connection screen ... 38

Illustration 20: The add/edit dialogue ... 38

Illustration 21: Project selection screen .. 39

Illustration 22: Negotiation view ... 40

Illustration 23: Result view .. 41

Illustration 24: CPU load when idling ... 53

Illustration 25: CPU load during a negotiation with 30 jobs ... 54

Illustration 26: CPU load during a negotiation with 120 jobs ... 55

Illustration 27: Class loading.. 56

Illustration 28: Memory load when idle... 57

file:///C:/Users/Franky/Documents/Studium%20SS09/WS0910/Software%20Project/Doku/Software%20Project%20Documentation.docx%23_Toc251777605

 Software Project WS09/10

 5

Illustration 29: Memory load during a negotiation .. 58

Illustration 30: Overview over threads .. 59

Illustration 31: General system information .. 60

Illustration 32: Joining a project .. 61

Illustration 33: Retrieving project changes .. 62

Illustration 34: Updating the project view ... 63

Illustration 35: Updating the NegotiationView .. 64

Illustration 36: Retrieving proposals for 30 jobs .. 65

Illustration 37: Retrieving proposals for 120 jobs .. 66

Illustration 38: Sending the evaluated points - 30 jobs .. 67

Illustration 39: Sending the evaluated points - 120 jobs .. 68

CHARTS

Chart 1: Results of AMP compared to Fink .. 42

Chart 2: J302 Approach 1 TCV Sum ... 43

Chart 3: J302 Approach 1 TCV Agent 1 .. 44

Chart 4: J302 Approach 1 TCV Agent 2 .. 44

Chart 5: J302 Approach 2 TCV Sum ... 45

Chart 6: J302 Approach 2 TCV Agent 1 .. 46

Chart 7: J302 Approach 2 TCV Agent 2 .. 46

Chart 8: J602 TCV Sum .. 47

Chart 9: J602 TCV Agent 1 ... 48

Chart 10: J602 TCV Agent 2 ... 48

Chart 11: X35 Approach 1 TCV Sum ... 49

Chart 12: X35 Approach 1 TCV Agent 1 ... 50

Chart 13: X35 Approach 1 TCV Agent 2 ... 50

Chart 14: X35 Approach 2 TCV Sum ... 51

Chart 15: X35 Approach 2 TCV Agent 1 ... 52

Chart 16: X35 Approach 2 TCV Agent 2 ... 52

 Software Project WS09/10

Introduction 6

1 INTRODUCTION

As a part of the master course “Software Technology” at the University of Applied Science Stuttgart, the

students have to participate in a software project during their 2nd semester.

The following final knowledge and skills will be acquired during the project by each student:

 Knowledge and practical experience of software engineering while developing software in an industry-

like project with real costumers

 Practical knowledge in using software design, version control, documentation, testing, maintenance

and software quality assurance.

 Practical experience of the difficulties of team management and troubleshooting (due to the size of

the project team)

The students were able to choose between two topics. Our team decided to choose the software project

offered by Professor Homberger “Ant-based Multi-Agent System for Collaborative Project Scheduling”.

To understand the purpose and goals of this software project, it is important to understand the fundamental

basics of the topic.

A project is defined as “a collaborative enterprise, frequently involving research or design, that is carefully

planned to achieve a particular aim”1. When working on a project, this project will usually be divided into

smaller subprojects. We will refer to these subprojects as “jobs”.

In a steadily evolving and globalizing business world, projects are no longer carried out by only one single

company. Take for example the building of a house: There might be one company responsible for the planning

and architecture, another company responsible for the bricklaying, yet other companies responsible for

plumbing, electrics, interior design and so on. Obviously, there has to be some sort of cooperation between

these companies because certain tasks in the process cannot begin before others, for instance it is not possible

to do the interior decoration before the house actually exists. It is even possible that one job is being carried

out by two different companies at the same time.

Now let’s take the example to a higher level. In the business world, with all the outsourcing of tasks, several

companies are not only collaborating in a project, but also in the same domain space.

There might be a project collaboratively handled by two companies, furthermore referred to as “agents”. The

project is divided into smaller work packages, the “jobs”. As in the introductory example of the building of a

house, jobs have a specific order in which they have to be performed. It is of course possible that certain jobs

can be performed in parallel, while others depend on each other. For instance, it is possible to layout the bricks

for a house and at the same time install the plumbing – but before you can start painting the walls the electrics

must be installed.

To visualize such a network of dependent jobs, you can for example use GANTT-diagrams or PERT-Charts (see

Illustration 1: Simplified example of a collaborative project plan). When two agents are working on one project,

these jobs are divided amongst the two agents. Since jobs are dependent on each other there has to be some

sort of negotiation on the start times of the jobs between the two agents because the start-times of jobs are

dynamic.

1 Oxford English Dictionary

 Software Project WS09/10

Introduction 7

1.1 PROBLEM

Jobs in a project either involve the investment of money or result in the earning of money. From a financial

point of view, investments of money will cost less when performed at a later point of time (keeping the money

in the company for a longer time will result in more earnings of interest). On the contrary, receiving payments

at an earlier point of time will also result in more earnings of interest.

Keeping this in mind, both agents will try to arrange the start times of jobs to be performed by them resulting

in a higher cash value (see 1.1.1).

As seen in the introduction, the problem lays in the conflicting interests of both agents. How is it possible to

come up with a job schedule that will satisfy both agents interest in a maximum cash value?

One simple approach that instantly comes to mind would be to know the financial information of both agents

and of each job and to calculate a solution that will give both agents the highest earnings. Unfortunately this

approach is unfeasible because it involves the sharing of financial information between the two agents. A

sharing of financial information of this kind is unwanted.

1.1.1 CASH VALUE

Cash value is the value on a given date of a future payment or series of future payments, discounted to reflect

the time value of money and other factors such as investment risk. Present value calculations are widely used

in business and economics to provide a means to compare cash flows at different times on a meaningful "like

to like" basis.

Start End Job 2

Job 3

Job 4

Job 5

Job 6

Job 1

Job performed by Agent A

Job performed by Agent B

Illustration 1: Simplified example of a collaborative project plan

 Software Project WS09/10

Introduction 8

The most commonly applied model of the time value of money is compound interest. To someone who can

lend or borrow for years at an interest rate 𝑖 per year (where interest of "5 percent" is expressed fully as 0.05),

the cash value 𝐶 of the receiving monetary units years 𝑡 in the future is:

𝐶𝑡 = 𝐶 ∗ 1 + 𝑖 −𝑡 =
𝐶

 1 + 𝑖 𝑡

Applying the above mathematical rule to our involved project, the cash value of the jobs can be calculated.

1.1.2 RESOURCE CONSTRAINTS

A resource in a project could be of human nature (for example a programmer in a software project or a painter

for a painting company) or even a machine. Also, a resource can be a collection of resources like a team

working on a job. Resources have a daily constraint; in Germany a typical constraint would be 8 hours/day. A

machine might be running 24 hours a day when it is being operated in three shifts of eight hours each.

Such resource constraints have to be considered while planning a project and coming up with project

schedules.

1.1.3 PROBLEM INSTANCES BY FINK

Professor Fink who has been doing intense research on the problem published problem instances which we

used for creation of the solution and benchmarking.

There exist in total 36 problem instances with the following properties:

 8 instances for problems having 30 jobs, 4 resources, 2 agents

 8 instances for problems having 60 jobs, 4 resources, 2 agents

 8 instances for problems having 120 jobs, 4 resources, 2 agents

We will only be using these problem instances for our software solution.

1.2 GOALS

The goal of this software project is to come up with a software solution that will create a project schedule

which will yield the highest total cash value (= sum of earnings of all jobs for both agents) without the agents

sharing their private payment information with each other.

The software should be running on a distributed system to enable agents negotiating independent of their

location.

Another important goal of this project is to have an application that can be shown at open-door-days at the

university to encourage interested students to study computer science. Therefore, a neat-looking, intuitive user

interface has to be generated. Other goals are to:

 Have a stable, easy-to-handle, intuitive application with “show-room”-effect (interested students

should be able to play with the application on “open-door-days” of the HFT)

 Have a great visual demonstration of how impressive computer science is and attract students to

study computer science at the HFT

 Have results that can be compared with other projects to have some sort of benchmark

 Software Project WS09/10

Introduction 9

1.3 APPROACH

In our solution approach, we will add a third, independent agent, referenced to as the “mediator”. The

mediator will only know basic information about a project like the name, number of jobs and the number of

resources involved. Based on this information, the mediator will then create a list of random proposals. A

proposal in this context is one random valid arrangement (schedule) of jobs for a given project (see 6.2.2.1

Serial Schedule Generation Scheme SSGS). The mediator does not know any payment information, therefore it

creates unbiased proposals. This list of possible proposals will be communicated to both agents. The agents will

internally and in privacy add the payment information to the proposals. Using the payment information the

agents are now able to rank the proposals based on a voting algorithm (see 6.2.3 Voting Algorithms). This will

result in a “hit list”, a ranking of which proposals an agent will favor and which one it will not like. This hit list,

not containing any financial information is then returned to the mediator.

For previous solution approaches performed in the past, the mediator would take a look at both hit lists and

look for matches. If no match is found, it would randomly generate new proposals and continue with this

process until a solution is found.

This process will eventually come up with a solution, but unfortunately this solution will not be the overall best

solution for both agents.

To come up with a better approach on how the mediator could create proposals, let’s take a look at how in the

animal world ants deal with problems regarding collaboration.

1.3.1 EXPLANATION PHEROMONE MATRIX

Let there be a collection of ants at a starting point A. Also, let there be a source of food at an ending point B.

Between these two points there exist obstacles that avoid a direct connection.

Illustration 2: Pheromone-example / ants dealing with an obstacle

The ants will start moving toward point B without knowing a good route yet. Imagine living in a new town

where you explore the city without knowing how to get from one place to the other. When coming across an

obstacle, some ants will decide to pass the obstacle one way, some will decide to pass the obstacle another

way (see Illustration 2: Pheromone-example / ants dealing with an obstacle). This process will repeat until the

first ant will arrive at point B (see Illustration 3: Pheromone-example / ant arrives at destination).

 Software Project WS09/10

Introduction 10

Illustration 3: Pheromone-example / ant arrives at destination

The ant will grab some food and start moving back to point A the same way it came before. How does it

remember the way? The trick is a scent of pheromones released by the ant that this ant and all others can

sense. This can be compared to the tale of Hansel and Gretel where they left breadcrumbs on the way to find

back.

This ant is following its own “breadcrumbs” – and additionally releasing more pheromone scent on its way back

to point A (see Illustration 4: Pheromone-example / ants returning back home).

Illustration 4: Pheromone-example / ants returning back home

The other ants will by highest chance walk the path with the strongest pheromone scent. As more and more

ants walk the same path – the path having proved to be the most efficient way between these two points – the

scent grows stronger and stronger until you have almost all ants walking the same path.

Illustration 5: Pheromone-example step 4

How can this idea of the pheromone scent be used to solve our problem?

The idea is to use a simulated “pheromone matrix” in the proposal generation. In this matrix, all possible job

sequences start with the same weight. As in the ant world – if there has not been an ant walking a path, there

is no scent.

After a negotiation round the mediator will then update the matrix according on the preferences of the agents.

Like the ants, the more ants walk a path, the more popular it is.

 Software Project WS09/10

Introduction 11

When the mediator will now create new random proposals it will take the favored job sequences into account.

When performing this technique a lot of times, the proposals generated will become better and better because

they are based on what the agents prefer without knowing any financial information (see 6.2.6 Pheromone

matrix example for details).

At some point there will be a solution which both agents will favor and which will be very close to the

achievable maximum total cash value.

Because the idea of this algorithm is based on the behavior of ants, we refer to such algorithms as “ant-based

algorithms”. These algorithms have shown to be highly effective and are used for example at railway stations or

for finding perfect routes in car navigation.

1.4 PROJECT TEAM

At the beginning of the project the team divided itself into areas of special interest and knowledge and chose a

responsible for each area.

 Project Manager

o Frank Erzfeld

 Agent

o Matthias Huber

 Algorithms

o Annemarie Meißner

 Distributed System

o Eduard Tudenhöfner

 Infrastructure

o Sandro DeGiorgi

 Project Webpage

o Jhumi Kanungo

Each team member was the decision maker in their respective project area. Still, in the progress of the project

everybody got involved in other areas as well so that in the end no clear division of work has been possible.

 Software Project WS09/10

Requirements 12

2 REQUIREMENTS

From the problem description and with the goals in mind we were able to derive the requirements of the

product. The requirements are divided into the business and the technological requirements.

2.1 BUSINESS REQUIREMENTS

The business requirements describe in business terms what must be delivered or accomplished to provide

value. For our project, the business requirements are described in the following chapters.

2.1.1 FEASIBLE SCHEDULE

The result of a negotiation between two agents must be a feasible schedule including the start times of the

jobs of a provided project. Feasible means that the start times must be in accordance to job-dependencies and

resource capacity.

2.1.2 SOLUTION QUALITY

The final solution of a negotiation should be of good quality. Good quality in our case equals a high total cash

value for the project.

2.1.3 GRAPHICAL USER INTERFACE

Another important goal of this project is to have an application that can be shown at open-door-days at the

university to encourage interested students to study computer science. Therefore, a neat-looking, intuitive user

interface has to be generated.

2.1.4 BENCHMARKING CAPABILITIES

There exist problem data with according solution data by Professor Fink using other algorithms to come up

with a solution for the same problem. To be able to benchmark our solutions with Fink, the software must be

able to provide all data in a format needed for comparison.

2.2 TECHNOLOGICAL REQUIREMENTS

The technological requirements describe in technological terms how the product has to be implemented.

2.2.1 DISTRIBUTED SYSTEM

The software must be able to run on a distributed system using internet technology to enable access from

anywhere in the world.

2.2.2 PLATFORM

The software must be able to run on the common platform of Microsoft Windows XP or higher.

2.2.3 HARDWARE REQUIREMENTS

Any machine being able to run Windows XP and meeting the requirements for Internet and the Java virtual

machine should be able to run the software.

 Software Project WS09/10

Solution Concept and Draft 13

3 SOLUTION CONCEPT AND DRAFT

In this chapter we will describe how we came up with a solution to the problem.

3.1 BUSINESS SOLUTION ELEMENTS

Taking into account the business requirements, we have to think about how we can provide a solution to them.

3.1.1 FEASIBLE SCHEDULE

To come up with a feasible schedule, we will have to implement an algorithm that will use the given

dependencies, the duration and the use of resources of each job and combine them in a valid way.

Each project contains of n+2 jobs. The two extra jobs are the start and the end of a project which are jobs with

no precessor/successor, no use of resources and duration of 0.

The algorithm will have to begin with job 0 and work its way through using the dependencies.

There can be more than one valid schedule for a problem.

The feasibility of a schedule will be assured using a validator.

3.1.2 SOLUTION QUALITY

After coming up with a solution to the scheduling problem we still don’t know which solution will be of the best

quality for an agent. To find out about this, we will have to add the cash values to the jobs. This way an agent

will be able to judge for itself which solution will provide the greatest cash value to it. The cash value must take

into account the interest rate.

We will still have the problem about not knowing the total cash value of the project. Making use of the ant-

based algorithm we will provide solutions that will take into account the favored solutions of both agents and

therefore come up with an optimized total cash value for a project.

3.1.3 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) is the connection between the user and our application. On the one hand, we

need an interface that is easy to understand without previous knowledge of the application. On the other hand,

the user wants to see a lot of information.

The user interface must lead the user through the negotiation process by:

- Allowing to connect to a mediator

- Selecting a project to join

- Showing the user current information on the negotiation progress

- Present the user a final result screen

- Forms with “as much information as necessary and as little information possible”

Additionally, the GUI should be error-proof meaning that there should be no possible way for a user to enter

faulty information that will cause the software or the server to crash.

 Software Project WS09/10

Solution Concept and Draft 14

3.1.4 BENCHMARKING CAPABIL ITIES

To be able to compare our results with Fink and have a benchmark, we will need the following:

- The name of the project (as in the problem data)

- Our maximum total cash value achieved

With this information we are able to see how good our solution approach compares with those of others.

3.2 TECHNOLOGICAL SOLUTION ELEMENTS

To meet the technological requirements, we have to think of a solution that will run on almost any machine

that is connected to the internet.

3.2.1 DISTRIBUTED SYSTEM

The easiest way to implement a client-server solution would be to have a direct communication between the

agents and the mediator. But this would be infeasible to realize because most users will have their computers

connected to the internet behind firewalls, routers, proxies and further technologies that would need a lot of

effort to run an application using a direct socket connection.

For realizing a distributed system with Java, there are different technologies on the market. Examples are RMI

(Remote Method Invocation) or Web Services. RMI is the object-oriented realization of the Remote Procedure

Call. The main advantages of RMI are that in can be realized using different protocols (RMI IIOP, Java Remote

Method Protocol, RMI over HTTP, and RMI with SSL) and that the communication between client and server is

very fast compared to Web Services. A web service is traditionally defined by the W3C as “a software system

designed to support interoperable machine-to-machine interaction over a network”. It has an interface

described in a machine-processable format (specifically Web Services Description Language (WSDL)). Other

systems interact with the web service in a manner prescribed by its description using SOAP messages, typically

conveyed using HTTP with an XML serialization in conjunction with other web-related standards. To avoid

dealing with firewalls and security settings HTTP has to be used as the underlying protocol. The usage of HTTP

is provided both by RMI and Web Services.

The fact that the mediator has to process concurrent requests makes the task of designing a distributed system

more complex. Using RMI we would have to implement services like Security, Concurrency, and Lifecycle

Management on our own. But using Web Services in combination with a Servlet Container (e.g. Apache

Tomcat), these services are already implemented and provided by the Container. Due to this we could

concentrate on the main tasks needed to realize the mediator.

The decision was to use Web Services with a Tomcat (as the runtime environment) for realizing the distributed

system allowing the communication between an agent and the mediator.

3.2.2 PLATFORM

To be able to run the application on almost any common machine, we decided to use Java technology. Any

Windows computer that is able to install a Java runtime environment will also be able to run our application.

Also, to ease the installation and usage, we will use Java Webstart technology. By using Webstart, the user will

be able to click a link in its browser which will then lead the user through the installation process installing all

necessary files on the machine needed to run the application. Also, for future use, files will already be present

on the machine which will speed up the start and only be updated if changes to the program occurred.

 Software Project WS09/10

Solution Concept and Draft 15

3.2.3 HARDWARE

Since we will be using Java any machine running one of the current operating systems will be able to run our

application. If the machine is able to surf the internet and has the latest Java runtime environment installed, it

can run our software.

3.2.4 WEB SERVICE FRAMEWORK

There are different Frameworks available which can be used to realize a distributed system in Java based on

Web Services. Examples are the Axis2 Framework from the Apache Group or JWS / JAX-WS (Java API for XML –

Web Services) which is delivered with the latest JDK version of Java. We decided to use Axis2 for realizing the

distributed system, as some of our team members already have experience using Axis2 with Tomcat as Servlet

Container.

3.3 TEAM PROJECT PLAN

At the beginning of the project we came up with a project plan to give us a time plan. This is our project plan

that we stuck to:

Milestone Contents Due-Date

1st Tasks:

 Get to know the project

 perform research

 talk to the customer about expectations

 set up the basic infrastructure to work on

 come up with ideas how to solve the problem

 create UML diagrams

 create the PID

Functionality:

 Import problem data sets

 Algorithm: Generate permutations

 Algorithm: Decode permutations

 Algorithm: Update pheromone matrix

11-11-2009

2nd Tasks:

 Create first running version with basic communication

between client and server

 Have infrastructure fully ready and running

 Have a fully functional agent application

Functionality:

 Agent: Mediator Connection

 Agent: Project Selection

30-11-2009

 Software Project WS09/10

Solution Concept and Draft 16

 Agent: Negotiation Screen

 Agent: Result Screen

 Distributed System: asynchronous communication

between server/client

 Distributed System: all functions needed to supply agent

with data

 Algorithm: Implement Borda voting algorithm

3rd Tasks:

 Perform one complete negotiation session between

agents and mediator with real problem data

21-12-2009

4th Tasks:

 Bug fixing and testing

 Project documentation

Functionality:

 Benchmarking

 Exporting of results to file

07-01-2010

Finish All deliverables completed

 Presentation of project to Mr. Homberger

14-01-2010

 Software Project WS09/10

Architecture 17

4 ARCHITECTURE

In this chapter we will describe the architecture of the project how it will be implemented.

4.1 SOFTWARE ARCHITECTURE

The internal structure of the software is described by UML notation in the following sections.

4.1.1 UML CLASS DIAGRAMS

These class diagrams show the primary classes of the components. Enumerations, as well as methods or class

attributes which are not necessary for the understanding of the components are not included.

4.1.1.1 AGENT

The Agent class diagram shows all classes which are needed to run our SWT application AMP. The following

listing describes the aspects of the classes or interfaces:

 Amp: This class creates the application and runs the SWT event loop. The loop handles all events that

occur, e.g. handle key events like pressing a button. Without the event loop, Amp would close

immediately after opening. Another task of this class is the switching between different views. Only

one instance of Amp exists which is hold by the AmpManager.

 AmpManager: The AmpManager is the most important part of the graphical user interface. The class

holds the Agent, a stub and a wrapper instance. The wrapper instance is used to communicate with

the mediator. Beside that the class also holds the different views and the negotiation session. The

AmpManager offers static methods to access these elements.

 MediatorAgentServiceWrapper: This class retrieves the Web Service requests from the client and

sends them to the Mediator. It encapsulates the marshalling/converting of the data which cannot be

sent by Axis2 and therefore makes the communication transparent to the client.

 Agent: This class calculates the total cash value for the proposals and performs the voting.

 IView: This is the interface for all views. Every view must implement the necessary instructions for its

lifecycle: initial creation, registering at the view composite and disposal of the view. As described,

every view registers itself at the ViewComposite, which is itself registered at the AmpManager.

 NegotiationSession: Every negotiation has its own instance of this class. This class is used as a client-

side storage during the whole negotiation process. Every round the session receives new information,

which are stored internally. The class provides static methods for accessing the stored data. This way,

during the negotiation every chart retrieves the necessary data from this session class.

 IChart: This is the interface for all charts. Beside the creation and disposal of the charts, every chart

implements two methods which are invoked each negotiation round. First, the necessary data is

retrieved from the negotiation session and the new values are calculated. After that, the chart

performs an update.

 DataOutputWriter: This class stores the result of the negotiation in form of a csv file onto the file

system.

 Software Project WS09/10

Architecture 18

Illustration 6: Agent class diagram

4.1.1.2 MEDIATOR

The UML diagram of the Mediator (Illustration 7) contains all data necessary to run the Mediator as a

WebService and to mediate between two Agents. The list below contains a description of the important classes

and components.

 MediatorServiceLifecycle: is running as a Servlet and the methods of the class are called by the Axis2

framework when the service is deployed.

 MediatorAgentService: contains the methods which can be called through WebService by the Agents.

This class delegates all calls to the Mediator class, except the registration requests.

 Registration: handles the whole registration process of an Agent. An Agent can register itself and gets

a unique identifier. This identifier is created using the AgentIdGenerator.

 Mediator: the Mediator itself works like a Singleton and is instantiated when the first request comes

in. It is the core of the server-side which has the purpose to mediate between two Agents. For this a

 Software Project WS09/10

Architecture 19

MediationSession is used. Everything regarding the negotiation between two Agents is processed

within such a MediationSession.

 MediationSession: When two Agents are negotiating, this is done within such a MediationSession. This

class contains all information necessary for a negotiation. Within this session, new proposals are

generated by using one of the concrete implementations of ProposalGeneratorAbstract. With the

MediationSession it is also possible that one project can be processed by more than two Agents,

because each project runs in such a session. For example two Agents could work on project X_35 and

another two Agents could work on the same project, but completely independent from the first two

Agents.

 DataIO: is used by the Mediator class to initialize the whole problem data with the payment

information. The DataIO uses the ProjectIdGenerator to create unique project identifiers. When a

negotiation between two Agents is finished, then the results are saved in a SolutionData class.

 ResourceCleaner: is started on deployment. Its purpose is to free up consumed resources by

Mediation Sessions.

Illustration 7: class diagram of the Mediator

 Software Project WS09/10

Architecture 20

4.1.1.3 COMMON LAYER

The common layer (Illustration 8) contains data holder classes which are used by the mediator as well as by the

agent. The data classes Proposal and Project use both the data class Job as central entity of the project. The

projects and the proposals are collected in a container, the ProposalComposition and the ProjectComposition.

The VotingAlgorithm interface and its different implementations are also part of the common layer. At the

moment, only the Borda algorithm is implemented, but with the flexible interface new implementations can be

added easily by implementing the two methods performVoting and perfomAggregation. The method

performVoting of the interface is used by an agent to evaluate the provided proposals. Using the method

performAggregation, the mediator finds the winner of the voted proposals.

Illustration 8: Class diagram of the CommonLayer

 Software Project WS09/10

Architecture 21

4.1.2 UML SEQUENCE DIAGRAM

Illustration 9: UML Sequence Diagram

 Software Project WS09/10

Architecture 22

The sequence diagram can be interpreted as follows:

1. The agent registers itself at the mediator

2. The mediator returns a unique ID to the agent

3. The agent asks the mediator for available projects

4. The mediator returns a list of all available projects to the agent

5. The agent joins a project

6. The mediator confirms this joining

7. The agent requests its payment data for the chosen project

8. The mediator sends the correct payment data to the agent

9. The agent waits in a loop until another agent successfully joined the same project

10. The agent requests a list of proposals

11. The mediator generates a list of proposals

12. The mediator sends the generated proposals to the agent

13. The agent evaluates the received proposals

14. The agent sends his evaluated proposals to the mediator

15. The mediator aggregates the evaluated proposals of both agents

16. The mediator updates the pheromone matrix according to the aggregated proposals

17. The agent unregisters from the mediator

18. The agent shows the results to the user

Bold items are repeated in a loop until the last round has finished or the negotiation is canceled.

4.2 SYSTEM ARCHITECTURE

The system architecture is quite easy, the agents communicate with the mediator over the internet (see

Illustration 10: System architecture)

Illustration 10: System architecture

 Software Project WS09/10

Development Environment 23

5 DEVELOPMENT ENVIRONMENT

In this chapter the set up of the development environment for our project is explained.

All traffic needed to be routed to go on port 80. The system needs to be reachable being behind a firewall and

proxy server for on-site operation at the customers place. The tools used had to be productive-proven, open

source/no cost and useable to perform state of the art software development. A development server was

provided by the customer.

Illustration 11: Infrastructure

5.1 TOOLS AND VERSIONS OF USED SOFTWARE

 Apache httpd 2.2.8

 Apache Tomcat 6.0.20

 Apache ant 1.7.1

 Redmine 0.7.3

 Mongrel x.x.x

 Subversion 1.4.6 (r28521)

 Hudson 1.333

 JDK 1.6.0_16-b01

 MySQL 5.0.51a

 JUnit 4.3.1

 Checkstyle 5.0

 FindBugs 1.3.9

 Cobertura 1.9.3

 PMD 4.2.5

 Software Project WS09/10

Development Environment 24

5.2 OPERATING SYSTEM

The operating system needed to be as reliable and resource efficient as possible. It was also important to build

a base to be able to run the chosen free software in - at best - current versions. The debian based Ubuntu 8.04

LTS (64-Bit) Linux operating system was chosen.

5.3 PROJECT MANAGEMENT

As online project management tool a software product called Redmine was chosen. It is a ruby on rails web

application by Jean-Philippe Lang, which is one of the best solutions on the free market at the moment. It

offers all needed features for the accomplishment of a collaborative project success. Redmine was also

connected to the Continuous Integration and Version Control systems (see further down). To run Redmine the

rails web server Mongrel was used.

5.4 VERSION CONTROL

Subversion was chosen for Source Code Version Management. There is no good reason anymore to stick with

CVS. We omitted the chance to play around with one of these widely upcoming GIT systems, since no team

member has experience with that kind of system, and we averted to catch additional complexity at this point.

5.5 CONTINUOUS INTEGRATION

As concurrent work on the same source code was inevitable and the nature of Subversion gives every

participant a local copy of the complete project, it was very important to integrate as often as possible - in a

central place, transparent for all participants. No more “but it runs on my machine”. Every project had to be

integrated, tested, build, deployed and run (for the Mediator) on the development server. Therefore the well

known Hudson continuous integration system was installed and used.

5.5.1 AUTOMATED BUILDS / AUTOMATED TESTING

The automated builds were done using Apache Ant. The automated testing used the integrated abilities of

Hudson and some Add-ons. On Subversion updates and on successful compilation several tests (including JUnit

tests) were performed.

5.5.2 APPLICATION SERVER

To run Hudson and for the actual deployment of the final product an application server was needed. The light-

weight application Apache Tomcat was chosen.

5.6 ENABLING THE WEB ACCESS

As doorman Apache httpd2 was used. To enable the access to the different systems several modules were

used:

 mod_dav_svn and libapache2_svn was used to connect to the Subversion server

 mod_proxy was used to connect to Redmine on Mongrel server

 mod_proxy_ajp was used to connect to the Apache Tomcat AJP Connector

 mod_proxy_ajp was also used to connect to Hudson CI Server

 Software Project WS09/10

Prototype 25

6 PROTOTYPE

This section deals with the actual implementation of the solution and is divided into the different parts of the

software respectively.

6.1 INFRASTRUCTURE

The approach in finding most suitable solutions in distributed computational problems used in this software

project bases on findings and proposals by [Dorigo, et al, 1991] and further papers in this field (see

reference section for a complete list). It uses a combination of positive feedback (autocatalytic)

and constructive greedy heuristics.

Dorigo's explorations show, that these autocatalytics lead to a "rapid discovery of very good solutions"

and the inherent information deficit in distributed computation prevents premature convergence to a

suboptimal outcome and the greedy heuristics ensure that the approach is able to find the wanted

good solutions in the early stages of the process.

Dorigo showed the success of this approach on the well known travelling salesman problem. Parts of the

paper give several hints how to apply this approach to a "variety of optimization problems".

A lot of research has been done in this field, since even critics have to admit that the proficiency of this

approach is formidable.

This software project now focuses on the problem of a distributed search for an optimal solution in

resource constraint project planning. As time of writing, an approach to this kind of problem using the

"Autocatalytic Optimizing Process" (that is: a so called ANT SYSTEM) has not been conducted, and the

project team is happy to share the results with the interested public.

6.2 ALGORITHMS

First, some assumptions/notations:

 A proposal is a possible solution for the project scheduling problem of the two agents. Such a proposal

consists of a ordered list of all activities of a project and for each activity a start time of the job in the

overall project plan.

 The winner of one negotiation round is the proposal, which delivers the highest total cash value for both

agents.

 C is the set of proposals, which are provided by the mediator.

 m is the number of proposals(ants), which are generated per round.

 n is the number of negotiation rounds.

6.2.1 GENERAL ANT ALGORITHM

In this section we describe the general “Ant Negotiation Algorithm” for our multi agent project scheduling

problem, based on (1). In the following diagram the general algorithm is described.

 Software Project WS09/10

Prototype 26

6.2.2 PROPOSAL GENERATION

In this section we describe, how the mediator generates a proposal, also called ant, based on (2). In (2) there

are two different schedule generation schemes described, the serial schedule generation scheme and the

parallel schedule generation scheme. We decided to use the serial schedule generation scheme, because the

parallel schedule generation scheme delivers not necessarily an optimal solution. In the following a short

introduction to the serial schedule generation scheme is given.

6.2.2.1 SERIAL SCHEDULE GENERATION SCHEME SSGS

In the following, a list of some notations that are used in the following:

 𝐽 = 0, . . . , 𝑛 + 1 denotes the set of activities of a project. We assume that a precedence relation is

given between the activities.

 K is a set of k resource types.

 𝑅 = 𝑅1, . . . , 𝑅𝑘 is the set of maximum resource capacities where 𝑅𝑖 > 0 is the constraint.

 Every activity j ∈ J has a completion time 𝑑𝑗 and resource requirements 𝑟𝑗1, . . . , 𝑟𝑗𝑘 𝑤𝑒𝑟𝑒 𝑟𝑗𝑖 is the

requirement for a resource of type i per time unit when activity j is scheduled.

Input: m number of proposals per negotiation round;

Mediator: initialize the pheromone matrix P with 1.0

Mediator: initialize the solution of the negotiation with null

Mediator: set current round t to one

 While (t unequal to the n)

Mediator: generate a set of m proposals (Ants)

based on P

Both Agents: evaluate the given Ants using a

voting rule

Mediator: perform aggregation with the voted

Ants and select the Ant with the

highest score as winner

Mediator: replace the solution of the

negotiation with the winner

Mediator: adapt P regarding to winner using a

adaptation rule

Output: the solution of the negotiation.

 Software Project WS09/10

Prototype 27

Let 𝑃𝑗 be the set of immediate predecessors of activity j. 0 is the only start activity, that has no predecessor,

and n+1 is the only end activity, that has no successor. We assume that the start activity and the end activity

have no resource requirements and have processing time zero. A schedule for the project is represented by the

vector (𝑠0, 𝑠1, . . . , 𝑠𝑛+1) where 𝑠𝑗 is the start time of activity 𝑗 ∈ 𝐽. If 𝑠𝑖 is the start time of activity i then

𝑓𝑖 = 𝑠𝑖 + 𝑑𝑖 is its finishing time.

A schedule is feasible if it satisfies the following constraints:

 Activity j ∈ J must not be started before all its predecessors are finished, that is 𝑠𝑗 ≥ 𝑠𝑖 + 𝑑𝑖 for every

𝑠𝑖 ∈ 𝑃𝑗 .

 The resource constraints have to be satisfied, that is at every time unit t the sum of the resource

requirements of all scheduled activities does not exceed the maximum resource capacities, that is for

every resource of type i it holds that

 𝑟𝑗𝑖 ≤ 𝑅𝑖

𝑠𝑗∈𝐽 ,𝑠𝑗≤𝑡<𝑠𝑗 +𝑑𝑗

The SSGS starts with a partial schedule that contains only the start activity 0 at time 0. Then SGS constructs the

complete schedule in n steps where at each step one activity is added to the partial schedule constructed so

far. In every step one activity j is selected from the set of eligible activities, which are activities that have not

been scheduled so far and where each predecessor has been scheduled.

For every eligible activity j let 𝐸𝐹𝑗 be the maximum finishing time of all its immediate predecessors plus 𝑑𝑗 . Let

𝐿𝐹𝑗 denote the latest finishing time of activity j that is calculated by backward recursion from an upper bound

of the finishing time of the project. Then the start time of activity j is the earliest time in 𝐸𝐹𝑗 − 𝑑𝑗 , 𝐿𝐹𝑗 − 𝑑𝑗

such that all resource constraints are satisfied.

6.2.3 VOTING ALGORITHMS

In this section we describe the voting algorithms, described in (3), which we discussed to use in our project.

There are other common voting algorithms described in (3), which are not feasible for our problem.

The whole voting process consists of two different steps:

1. the voting of the given proposals, which is performed by the two agents, where both agents give

“points”, according to their preferences for the given proposals.

2. the aggregation of the voted proposals, which is performed by the mediator, to find the common best

solution for both agents, using the two different votings for the given proposals.

In the following, a short introduction to the discussed voting algorithms is given.

6.2.3.1 SCORING RULE

1. Voting of the given proposals

Let 𝛼 = < 𝛼1, … , 𝛼𝑚 > be a vector of integers such that 𝛼𝑖 ≥ 𝛼𝑖+1. For each voter, a proposal receives:

 𝛼1 points if it is ranked first by the agent,

 𝛼2 points if it is ranked second by the agent,

 etc.

 Software Project WS09/10

Prototype 28

2. Aggregation of the given proposals

The score of a proposal is the sum of the points the proposals receive by the two agents. The proposal with the

highest score wins.

6.2.3.1.1 BORDA

The Borda rule is the scoring rule with 𝛼 = < 𝑚 − 1, 𝑚 − 2, … , 0 >

6.2.3.1.2 PLURALITY

The Plurality rule is the scoring rule with 𝛼 = < 1, 0, … , 0 >

Note: The likelihood for one winner is very low with this approach. There can be the case of no match of the

two agents voting and therefore no winner.

6.2.3.1.3 APPROVAL

1. Voting of the given proposals

Each agent labels each proposal as either approved or disapproved.

2. Aggregation of the given proposals

The proposals which are approved by both agents are the winners.

Note: The likelihood for one winner is very low with this approach. There can be no match and therefore no

winner or several matches and therefore more than one winner.

6.2.3.1.4 COPELAND

1. Voting of the given proposals

𝑁 𝑖, 𝑗 is the number of agents who prefer proposal i more than proposal j. For any two distinct proposals i and

j, let 𝐶(𝑖, 𝑗) be

𝐶 𝑖, 𝑗 =

1, 𝑖𝑓 𝑁 𝑖, 𝑗 > 𝑁 𝑗, 𝑖

1

2
, 𝑖𝑓 𝑁 𝑖, 𝑗 = 𝑁 𝑗, 𝑖

0, 𝑖𝑓 𝑁 𝑖, 𝑗 < 𝑁 𝑗, 𝑖

2. Aggregation of the given proposals

The Copeland score is

𝑠 𝑖 = 𝐶(𝑖, 𝑗)

𝑗≠𝑖

The proposal with the highest score wins.

6.2.3.1.5 CONCLUSION

We decided to use the Borda Algorithm, because with this algorithm the voted proposals of the agents have a

clear preference hierarchy and the mediator has the assurance for exactly one winner per negotiation round.

 Software Project WS09/10

Prototype 29

6.2.4 ANT COLONY OPTIMIZATION AOC – ADAPTATION RULE

In the following, the AOC is described, based on (2). The general idea of the ACO approach is to use an ant

algorithm for deciding which activity from the set of eligible activities should be scheduled next by the SSGS.

The general principle of the ant algorithm is similar to an ant algorithm called AS-TSP for the travelling

salesman problem of (Dorigo, 1992; Dorigo et al., 1996).

In every generation each of m ants constructs one solution. An ant selects the activities in the order in which

they will be used by the serial schedule generation scheme. In (2) for the selection of an activity the ant uses

heuristic information as well as pheromone information. But in our approach we use only the pheromone

information, because of the distributed system. The heuristic value is generated

by some problem-dependent heuristic. In the distributed system we do not know the total cash values of the

agents, which we have to know for using heuristic information for the selection of an activity.

The pheromone information, denoted by 𝑝𝑖𝑗 , are indicators of how good it seems to schedule activity j as the

ith using the SSGS. The next activity is chosen according to the probability distribution over the set of eligible

activities E. In our approach is this according to

𝑝𝑖𝑗 =
𝑇𝑖𝑗

 𝑇𝑖∈𝐸

The best solution found in the current generation is then used to update the pheromone matrix. But before

that some of the old pheromone is evaporated on all the edges according to

𝑝𝑖𝑗 = 1 − 𝑓 ∗ 𝑝𝑖𝑗

where parameter f determines the evaporation rate. The reason for this is that old pheromone should not have

a too strong influence on the future. Then, for every activity 𝑗 ∈ 𝐽 some amount, an update unit 𝑢𝑢, of

pheromone is added to element (𝑖𝑗) of the pheromone matrix where i is the place of activity j in the best

solution in the current round:

𝑇𝑖𝑗 = 𝑇𝑖𝑗 + 𝑢𝑢

 Software Project WS09/10

Prototype 30

6.2.5 IMPROVEN PHEROMONE MATRIX UPDATE

The old pheromone should not have a too strong influence on the future. To improve the update of the

pheromone, a variable update unit vu of the pheromone matrix was introduced.

Linear increasing function

 𝑟 number of negotiation rounds

 𝑐𝑟 current negotiation round

 𝑢𝑢 Static update unit of pheromone matrix

 𝑝𝑟 negotiation round for which 𝑢𝑢 is constant 𝑝𝑟 ≤ 𝑟

𝑣𝑢 =
𝑐𝑟

𝑝𝑟
𝑢𝑢

Use of this variable update unit we have been able to improve the results of the negotiation significantly.

6.2.6 PHEROMONE MATRIX EXAMPLE

Take this small example for the shown network plan:

1. Pheromone matrix update

Assume the following first solution:

S = {1, 2, 4, 3, 5} and update unit for the pheromone matrix of uu = 1

2. Select eligible activity

Assume the following partial schedule

𝑆𝑝 = {1,2} and a set of next eligible activities E= {3, 4}

 𝑎𝑙𝑙 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑐𝑜𝑙𝑢𝑛𝑛 2 = 3 𝑃3 =
1

3
, 𝑃4 =

2

3
 𝑖𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑐𝑡. 4

 Software Project WS09/10

Prototype 31

6.3 DISTRIBUTED SYSTEM

The main goal of a Web Service Framework is the platform-independency. The implementation of a service can

be realized in one programming language and used by a client implemented in a different language. A C#-Client

can therefore for example use services written in Java. With Web Services the exchange of messages between

service provider and service user is handled by XML messages. Most Web Service applications aren't concerned

with XML. Instead such applications want to exchange business data that is specific to the application. XML is in

this case just a format used to represent the business data. For this purpose XML provides a platform-

independent representation that can be handled by a variety of tools. But finally these applications need to

convert the XML to or from their own internal data structures to use the data within the application. To

accomplish these tasks, different Data Binding Frameworks can be used within Axis2. The default Data Binding

Framework used in Axis2 is ADB. ADB allows converting primitive data types (int, float, double), Strings and

Arrays, but there is no way to send Java-specific data types like Lists, HashMaps, Sets. Besides ADB, there are

other Data Binding Frameworks which can be used within Axis2. Examples are XMLBeans, JAXB or JiBX. Some of

them can solve the problem of sending Java-specific data types over the network, but these Data Binding

Frameworks give working with the source code an XML-like behavior. The code gets very XML-specific and

loses its natural way.

Using these Data Binding Frameworks isn't satisfying our needs, so we decided to use ADB for simple and

primitive Java types and to write our own Marshaller. The purpose of the marshaller is to convert the data

formats which cannot be sent by ADB. On the server-side the data is converted and wrapped into a format

which can be handled by ADB and on the client-side this data is then unwrapped and converted back into the

original format. This solution gives us the easiest way of dealing with the problem of Data-Binding with Web

Services.

6.3.1 ARCHITECTURE OF THE DISTRIBUTED SYSTEM

The overall architecture of the distributed system can be seen below.

Illustration 12: Architecture of the distributed system

 Software Project WS09/10

Prototype 32

6.3.2 DESCRIPTION OF THE SERVICE METHODS

There are different service methods provided by the Mediator to the Agents. A detailed description can be

seen below.

 register() / unregister(): Allows an Agent to register or unregister itself from the Mediator. If a

registration process was successful, then the Agent gets a unique identifier. An identifier is never

reused when an Agent unregisters itself.

 getAvailableProjects(): An Agent can ask the Mediator for all available projects which were

initialized at the beginning of the lifecycle of the Mediator.

 joinProject() / leaveProject(): After retrieving all available projects from the Mediator an Agent

can choose a specific project and then join it. When joining a project the Agent has to wait for

another Negotiator. If the Agent gets impatient it's also possible to leave the project and join

another project.

 retrievePaymentData(): Each Agent can retrieve its payment data from the Mediator. Therefore

the Agents don't have to read the payment data from a file each time they join a specific project.

The Mediator itself just holds the payment data and doesn't use it for calculating stuff (The

payment data is initialized when all available projects are initialized).

 retrieveProposals(): When two Agents have joined a specific project, then they are able to

retrieve proposals for their Negotiation.

 setProposalEvaluations(): After each negotiation round each Agent sends the voted solution to

the Mediator. Based on this information new proposals are generated.

 retrieveProjectChanges() / retrieveProjectChange(): These methods are called by the Agents to

get changes for one or more projects. If an Agents waits in the Project View and another Agent

joins a project, the first Agent sees the changes. Retrieving information for a single project is

needed when an Agent has joined a specific project and needs to wait for another Agent to join. If

a second Agent joins the project, both Agents know that the negotiation can start.

6.3.3 DESCRIPTION OF THE MEDIATOR COMPONENTS

 Marshaller / Converter: On the server-side the data is wrapped and converted into a format

which can be handled by the Axis2 Data Binding Framework.

 Mediation Session: The negotiation of two Agents is performed in a session object.

 Generator for IDs: Different generators are used for the identification of Agents or projects.

Therefore we have a generator which purpose is to generate unique IDs for Agents and a

generator that generates unique IDs for projects.

 Generator for Proposals: Based on the evaluated points new proposals are generated and sent

back to each Agent.

 Pheromone Matrix: This is the Pheromone Matrix which is updated in each negotiation round.

 DataWriter: This component handles the initialization of projects, jobs, payment data and so on.

All the information is gathered from files at the beginning of the lifecycle of the Mediator.

 Registration of Agents: This component manages the registration of Agents.

 Resource Cleaner: The purpose of the Resource Cleaner is to free session objects which are not

used anymore and only consume resources. Using such a Cleaner is an easy way to avoid

remembering the state of each session at the Mediator. Remembering state can get very

complex, so we decided to use this solution.

 Voting Algorithms: These algorithms have an important impact on how the voting is performed.

Currently only the BORDA algorithm is implemented, but the system is designed in a way that

other algorithms can be easily added.

 Software Project WS09/10

Prototype 33

6.3.4 DESCRIPTION OF THE AGENT COMPONENTS

 Stub: The stub is responsible for the communication between the Agent and the Mediator.

 Marshaller / Converter: On the client-side the data is unwrapped and converted back into the

origin format and then passed to the Agent.

 Voting of Solutions: Solutions are voted based on the selected Voting Algorithm.

 Selection of Projects: An Agent retrieves all available projects and has the possibility to select and

configure a specific project. The second Agent joining this project can't do any changes to the

previously defined settings by the first Agent.

 Views: Different views are implemented where the user can for example select a Mediator to

connect to, get an overview over all projects, participate in a negotiation and get a result view

where the outcome of a negotiation is shown.

 Charts: During a running negotiation different charts are drawn to show the progress of the

negotiation.

 DataWriter: after a negotiation the user has the chance to save the outcome into a file.

 Data: represents all the data that is needed within the different steps of processing.

 Software Project WS09/10

Prototype 34

6.4 AGENT

This chapter will explain how the agent was designed and implemented and how it is used.

6.4.1 SPECIFICATION / DESIGN

The agent will be the interface between the user and our application. Therefore it will need to provide all the

functionality on user side packed into a nice neat looking graphical user interface.

At first, the user will need to choose to what mediator to connect to. We thought of a list of pre defined servers

with the possibility to add or edit as needed (see Illustration 13: Draft of the mediator connection screen). After

having selected a mediator, the user will connect to the mediator and fetch the available projects from the

server via webservices.

Illustration 13: Draft of the mediator connection screen

On the next screen, the user will be presented with the list of available projects. Also will the user be able to

see detailed information on a project like number of resources and their capacities, number of connected

agents and further information necessary to start a negotiation like voting algorithm, number of iterations and

proposals per round (see Illustration 14: Draft of the project selection screen). After selecting a project and

clicking on the join button, the first user to “join” a project will wait for another user to join the same project.

Illustration 14: Draft of the project selection screen

When both users have successfully joined a project, they will be entering the negotiation view. In the

negotiation view the user can follow the status of the negotiation and will be presented with visualizations of

the development of the cash value, capacity plans, resource plans and project statistics and information.

 Software Project WS09/10

Prototype 35

Illustration 15: Draft of the negotiation screen

To maximize usage of display space, the user will have the possibility to switch between the different resources

and information. The user will also be able to cancel the negotiation (see Illustration 15: Draft of the

negotiation screen)

After successful completion of a negotiation, the user will end up with the result screen. Here the user will have

all important information at hand like facts to the winning proposal, all charts from the negotiation and the

possibility to save the results to disk (see Illustration 16: Draft of the result screen)

Illustration 16: Draft of the result screen

 Software Project WS09/10

Prototype 36

6.4.2 IMPLEMENTATION

At the beginning of our project we had to choose a toolkit for developing the graphical user interface.

Depending on our preferred programming language "Java", we had the choice between Swing and the

Standard Widget Toolkit (SWT). We excluded the Abstract Window Toolkit (AWT) directly because it's older

than the other ones and could not compete in criteria like performance, set of graphical elements and

appearance.

The following chapters show a comparison of the two toolkits on the basis of our predefined criteria.

6.4.2.1 PERFORMANCE

To give a result on this it is necessary to explain the kind of toolkits. Swing is a Lightweight UI, so Java is

responsible for rendering the graphical components. That means that a Swing Application has always the same

appearance on every kind of operating system. In comparison SWT is a Heavyweight UI and the appearance of

an SWT Application depends on the underlying operating system. SWT uses the native widget of the operating

system and therefore has the Look & Feel of it. The rendering of the graphical components is done by the

operating system. This tends to the result that SWT has a better performance than Swing.

6.4.2.2 LOOK AND FEEL (APPEARANCE)

As mentioned SWT has the Look&Feel of the underlying operational system, so it looks different on Windows 7

than on Mac OS X. A Swing Application would look the same on both operating systems. We prefer the Look &

Feel of the operational system.

6.4.2.3 PLATFORM INDEPENDENCY

Real platform independency is only given with Swing not with SWT. The API of SWT is independent from the

operational system, but as SWT uses the native graphical components real platform independence is not given

anymore. This means, that it is necessary to deliver special SWT libraries fitting to the operating system. This

isn’t a real problem because SWT supports all common operational systems (as you can see in this download

section
2
).

6.4.2.4 EXPERIENCE

Due to the fact that we are facing enough new unknown areas like the ant-based or voting algorithms, we

prefer choosing a toolkit which we already know. So we don’t need to learn a new one which would take

additional time.

6.4.2.5 OUTCOME

We choose SWT because one of our main goals was a good performance of the Mediator and the Agents. Also

the Look&Feel of the underlying operating system doesn’t confuse users. They know the appearance because

of their daily work. Another point for this decision was that the responsible persons for the graphical user

interface are more familiar with SWT. These benefits overcome the problem described under the point

Platform Independency because it is a deployment problem and not a programming one. Another advantage of

SWT is the possibility of using JFace which will be explained in more detail in the next section. At the beginning

of our project it was not predictable if we were to use JFace.

2 http://download.eclipse.org/eclipse/downloads/drops/R-3.5.1-200909170800/index.php#swt

 Software Project WS09/10

Prototype 37

6.4.2.6 ADDITIONAL TOOLKITS

On the basis of SWT we searched for additional toolkits which help us creating charts or provide more complex

graphical components than SWT offers.

6.4.2.6.1 CHART TOOLKITS

For drawing charts we found two free available chart libraries. The two are JFreeChart3 and SWTChart4.

JFreeChart offers a lot more chart types than SWTChart, which can only draw line-, area and bar charts. These

charts are sufficient to our needs, so we decided to use SWTChart, in hope that the familiarization is shorter

than with the huge JFreeChart library.

During the implementation of the Agent UI we found out that the realization of the chart showing the order of

jobs is not possible with SWTChart. So we extended SWTChart with an own implementation for this type of

chart. Refer to chapter “Resource Capacity Plan by jobs” (6.4.3.3.3.) to see what this looked like in the end.

6.4.2.6.2 JFACE

JFace is a UI toolkit which is on top of SWT as you can see in the image below. It is implemented to work with

SWT and simplifies common UI programming tasks.

Illustration 17: JFace in the context of SWT/Eclipse5

JFace also uses the graphical components of SWT and combines them to more complex components. We used

the component ProgressMonitorDialog to visualize the long running user tasks. There are three actions which

take a longer execution time: registration of the agent, receiving project data and waiting until the negotiation

starts. Illustration 18 shows the ProgressMonitorDialog during the process of waiting for another agent until

the negotiation can start.

Illustration 18: ProgressMonitorDialog

3 http://www.jfree.org/jfreechart/

4
 http://www.swtchart.org/

5 http://www.ibm.com/developerworks/java/library/os-ecgui1/

 Software Project WS09/10

Prototype 38

6.4.3 GUI EXPLAINATION

In this section the GUI is explained step-by-step with each button and function.

6.4.3.1 MEDIATOR CONNECTION

The mediator connection screen is the first thing the user sees when starting the application.

The screen is showing a list of pre-defined mediators (the actual live server and a local server), buttons to add,

edit or remove entries in the list and buttons to close the application or connect to the selected mediator (see

Illustration 19: The mediator connection screen).

Illustration 19: The mediator connection screen

A click on the “Add” or “Edit” Button will open a dialog to add or edit an entry (see Illustration 20: The add/edit

dialogue)

Illustration 20: The add/edit dialogue

Clicking on “Connect” will register the agent at the mediator provided. While the mediator is waiting for the

mediator to send the list of available projects, the user will be seeing a status window.

6.4.3.2 PROJECT SELECTION

After successfully retrieving the project list from the mediator, the user will see the project selection screen

(see Illustration 21: Project selection screen).

 Software Project WS09/10

Prototype 39

On the left side of the screen the user will see a list of available projects being updated every few seconds. A

list item displays the project name and in brackets the number of connected users and maximum number of

agents for this project. By clicking one of the buttons at the top the user has the possibility to filter the list:

- All projects: All projects will be shown to the user

- None: Only projects with no agents connected will be shown

- One Agent: All projects with one agent connected will be shown

On the top right corner of the view the user has the ability to setup certain factors of a negotiation:

- Voting algorithm: What voting algorithm will be used by both agents during the negotiation

- Negotiation Rounds: How many rounds of negotiations the whole negotiation will take

- Proposals per round: How many proposals will be generated by the mediator in one iteration

- Rate of interest: the rate of interest used by the agent for calculation of the cash value

Right underneath the user can see information about the selected project:

- Project name: The name of the selected project

- Number of Jobs: The number of jobs of the selected projects (including the two “dummy” jobs for

begin and end of a project)

- Number of resources: The number of resources involved in the selected project

At the bottom right of the screen there are two buttons for navigation:

- Join: The user will join a project. If the user is the initiator of a project, he will see a waiting screen

until the second agent has joined the project and negotiation starts

- Back: The user will return to the previous view (see 6.4.3)

Illustration 21: Project selection screen

 Software Project WS09/10

Prototype 40

6.4.3.3 NEGOTIATION SCREEN

After two agents have successfully joined the same project, they will see the negotiation screen. The

negotiation screen is divided into 4 areas (see Illustration 22: Negotiation view)

- Cash Value Chart

- Resource-/Capacity Plans

- Project Information/Statistics

- Status bar

Illustration 22: Negotiation view

6.4.3.3.1 CASH VALUE CHART

The cash value chart visualizes the history of the cash value of the negotiation. There are three lines:

- Blue line: The cash value of the favored proposal of the agent

- Green line: The cash value as proposed by the mediator

- Red line: The highest cash value reached in the negotiation so far

On the x-axis you have the rounds and on the y-axis the amount of cash.

You can zoom in/out by double-clicking on the chart with the left/right mouse button.

6.4.3.3.2 RESOURCE CAPACITY PLAN BY ALLOCATION

The resource allocation plan by allocation will visualize how much of the capacity of a resource at the current

point of negotiation at a certain time is being used.

 Software Project WS09/10

Prototype 41

6.4.3.3.3 RESOURCE CAPACITY PLAN BY JOBS

The resource capacity plan by jobs will visualize at what time a certain resource will start what job at what

duration and how much capacity it will be using for it.

6.4.3.3.4 STATISTICS / INFORMATION

At the top right screen information and statistics about the project can be seen:

- Number of Jobs: The number of jobs of the project being negotiated

- Minimum/Maximum/Average/Current Cash value: Statistical information about the cash value

- Minimum/Maximum/Average/Current project length: Statistical information about the project span

- Current negotiation runtime: The runtime of the negotiation (in seconds)

6.4.3.4 RESULT VIEW

After successful completion of a negotiation, the user will see the Result View (see Illustration 23: Result view)

Illustration 23: Result view

On the top of the screen the user will see numerical statistics (cash value and project duration).

In the middle, the user has the possibility to take a look at the cash value chart, the allocation plans or the job

plans (allocation and job plans can be looked at for each resource itself).

At the bottom the user has the possibility to:

- Save results to database

- Save the results to file

- Start a new negotiation

- Exit AMP

 Software Project WS09/10

Results 42

7 RESULTS

We have been able to fulfill all requirements of the project. Our final solution does come up with very good

results for the given problem data by Fink.

Applying our algorithms to exemplary problem data of Fink, we obtained the following results as can be seen

on Chart 1: Results of AMP compared to Fink.

The values in green are the solutions provided by Fink. In red you will see the results from our solution.

It can be obtained that we have been able to come up with exactly the same results on our distributed system

as Fink for the 30s projects.

For the 60s and 120s projects we obtained results differing from 1,8% - 16,3% worse than Fink on our

distributed system.

For detailed evaluations of our solutions please see Chapters 7.1 - 7.5.

Chart 1: Results of AMP compared to Fink

 Software Project WS09/10

Results 43

7.1 PROBLEM J302 APPROACH 1

Given:

 Number of rounds: 5000

 Proposals per round: 20

 Voting Algorithm: Borda

 Update Rule: Unit = 1.0

Results:

 Agent 1 cash value result:

o 647,85

 Agent 2 cash value:

o 571,26

 Total cash value:

o 1219,11

 Runtime in seconds:

o 86,66

 Best total cash value:

o Round 370

o 1219,11

Chart 2: J302 Approach 1 TCV Sum

1190

1195

1200

1205

1210

1215

1220

1225

1

15
8

31
5

47
2

62
9

78
6

94
3

11
00

12
57

14
14

15
71

17
28

18
85

20
42

21
99

23
56

25
13

26
70

28
27

29
84

31
41

32
98

34
55

36
12

37
69

39
26

40
83

42
40

43
97

45
54

47
11

48
68

TCV Sum

 Software Project WS09/10

Results 44

Chart 3: J302 Approach 1 TCV Agent 1

Chart 4: J302 Approach 1 TCV Agent 2

630

632

634

636

638

640

642

644

646

648

650
1

15
3

30
5

45
7

60
9

76
1

91
3

10
65

12
17

13
69

15
21

16
73

18
25

19
77

21
29

22
81

24
33

25
85

27
37

28
89

30
41

31
93

33
45

34
97

36
49

38
01

39
53

41
05

42
57

44
09

45
61

47
13

48
65

TCV Agent1

554

556

558

560

562

564

566

568

570

572

574

1
15

3
30

5
45

7
60

9
76

1
91

3
10

65
12

17
13

69
15

21
16

73
18

25
19

77
21

29
22

81
24

33
25

85
27

37
28

89
30

41
31

93
33

45
34

97
36

49
38

01
39

53
41

05
42

57
44

09
45

61
47

13
48

65

TCV Agent2

 Software Project WS09/10

Results 45

7.2 PROBLEM J302 APPROACH 2

Given:

 Number of rounds: 5000

 Proposals per round: 20

 Voting Algorithm: Borda

 Update Rule: update unit=4 - linear influence factor 80%==1

Results:

 Agent 1 cash value:

o 647,85

 Agent 2 cash value:

o 571,26

 Total cash value:

o 1219,11

 Runtime in seconds:

o 77,32

 Best total cash value:

o Round 310

o 1219,11

Chart 5: J302 Approach 2 TCV Sum

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1

15
8

31
5

47
2

62
9

78
6

94
3

11
00

12
57

14
14

15
71

17
28

18
85

20
42

21
99

23
56

25
13

26
70

28
27

29
84

31
41

32
98

34
55

36
12

37
69

39
26

40
83

42
40

43
97

45
54

47
11

48
68

TCV Sum

 Software Project WS09/10

Results 46

Chart 6: J302 Approach 2 TCV Agent 1

Chart 7: J302 Approach 2 TCV Agent 2

630

632

634

636

638

640

642

644

646

648

650
1

15
3

30
5

45
7

60
9

76
1

91
3

10
65

12
17

13
69

15
21

16
73

18
25

19
77

21
29

22
81

24
33

25
85

27
37

28
89

30
41

31
93

33
45

34
97

36
49

38
01

39
53

41
05

42
57

44
09

45
61

47
13

48
65

TCV Agent1

545

550

555

560

565

570

575

1
15

3
30

5
45

7
60

9
76

1
91

3
10

65
12

17
13

69
15

21
16

73
18

25
19

77
21

29
22

81
24

33
25

85
27

37
28

89
30

41
31

93
33

45
34

97
36

49
38

01
39

53
41

05
42

57
44

09
45

61
47

13
48

65

TCV Agent2

 Software Project WS09/10

Results 47

7.3 PROBLEM J602

Given:

 Number of rounds: 10000

 Proposals per round: 50

 Voting Algorithm: Borda

 Update Rule: update unit=150 --> influence 80%==1

Results:

 Agent 1 cash value:

o 803,79

 Agent 2 cash value:

o 887,83

 Total cash value:

o 1691,62

 Runtime in seconds:

o 890,2

 Best total cash value:

o Round 1009

o 1700,86

Chart 8: J602 TCV Sum

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1

31
4

62
7

94
0

12
53

15
66

18
79

21
92

25
05

28
18

31
31

34
44

37
57

40
70

43
83

46
96

50
09

53
22

56
35

59
48

62
61

65
74

68
87

72
00

75
13

78
26

81
39

84
52

87
65

90
78

93
91

97
04

TCV Sum

 Software Project WS09/10

Results 48

Chart 9: J602 TCV Agent 1

Chart 10: J602 TCV Agent 2

750

760

770

780

790

800

810

820
1

30
5

60
9

91
3

12
17

15
21

18
25

21
29

24
33

27
37

30
41

33
45

36
49

39
53

42
57

45
61

48
65

51
69

54
73

57
77

60
81

63
85

66
89

69
93

72
97

76
01

79
05

82
09

85
13

88
17

91
21

94
25

97
29

TCV Agent1

820

830

840

850

860

870

880

890

900

910

1
30

5
60

9
91

3
12

17
15

21
18

25
21

29
24

33
27

37
30

41
33

45
36

49
39

53
42

57
45

61
48

65
51

69
54

73
57

77
60

81
63

85
66

89
69

93
72

97
76

01
79

05
82

09
85

13
88

17
91

21
94

25
97

29

TCV Agent2

 Software Project WS09/10

Results 49

7.4 PROBLEM X35 APPROACH 1

Given:

 Number of rounds: 15000

 Proposals per round: 100

 Voting Algorithm: Borda

 Update Rule: update unit=80

Results:

 Agent 1 cash value:

o 1388,78

 Agent 2 cash value:

o 1366,38

 Total cash value:

o 2755,16

 Runtime in seconds:

o 6551,63

 Best total cash value:

o Round 408

o 2759,45

Chart 11: X35 Approach 1 TCV Sum

2450

2500

2550

2600

2650

2700

2750

2800

1

47
0

93
9

14
08

18
77

23
46

28
15

32
84

37
53

42
22

46
91

51
60

56
29

60
98

65
67

70
36

75
05

79
74

84
43

89
12

93
81

98
50

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Sum

 Software Project WS09/10

Results 50

Chart 12: X35 Approach 1 TCV Agent 1

Chart 13: X35 Approach 1 TCV Agent 2

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420
1

47
0

93
9

1
4

0
8

1
8

7
7

2
3

4
6

2
8

1
5

3
2

8
4

3
7

5
3

4
2

2
2

4
6

9
1

5
1

6
0

5
6

2
9

6
0

9
8

6
5

6
7

7
0

3
6

7
5

0
5

7
9

7
4

8
4

4
3

8
9

1
2

9
3

8
1

9
8

5
0

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Agent1

1240

1260

1280

1300

1320

1340

1360

1380

1400

1

47
0

93
9

14
08

18
77

23
46

28
15

32
84

37
53

42
22

46
91

51
60

56
29

60
98

65
67

70
36

75
05

79
74

84
43

89
12

93
81

98
50

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Agent2

 Software Project WS09/10

Results 51

7.5 PROBLEM X35 APPROACH 2

Given:

 Number of rounds: 15000

 Proposals per round: 100

 Voting Algorithm: Borda

 Update Rule: update unit=15000 --> influence 80%==1

Results:

 Agent 1 cash value:

o 1380,91

 Agent 2 cash value:

o 1396,58

 Total cash value:

o 2777,48

 Runtime in seconds:

o 7025,82

 Best total cash value:

o Round 1203

o 2790,75

Chart 14: X35 Approach 2 TCV Sum

2400

2450

2500

2550

2600

2650

2700

2750

2800

2850

1

47
0

93
9

14
08

18
77

23
46

28
15

32
84

37
53

42
22

46
91

51
60

56
29

60
98

65
67

70
36

75
05

79
74

84
43

89
12

93
81

98
50

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Sum

 Software Project WS09/10

Results 52

Chart 15: X35 Approach 2 TCV Agent 1

Chart 16: X35 Approach 2 TCV Agent 2

1150

1200

1250

1300

1350

1400

1450
1

47
0

93
9

1
4

0
8

1
8

7
7

2
3

4
6

2
8

1
5

3
2

8
4

3
7

5
3

4
2

2
2

4
6

9
1

5
1

6
0

5
6

2
9

6
0

9
8

6
5

6
7

7
0

3
6

7
5

0
5

7
9

7
4

8
4

4
3

8
9

1
2

9
3

8
1

9
8

5
0

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Agent1

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420

1

47
0

93
9

14
08

18
77

23
46

28
15

32
84

37
53

42
22

46
91

51
60

56
29

60
98

65
67

70
36

75
05

79
74

84
43

89
12

93
81

98
50

10
31

9

10
78

8

11
25

7

11
72

6

12
19

5

12
66

4

13
13

3

13
60

2

14
07

1

14
54

0

TCV Agent2

 Software Project WS09/10

Performance Measurements 53

8 PERFORMANCE MEASUREMENTS

To get a better feeling about how the Agent behaves in different scenarios and how resource consumption is,

we decided to test the performance of the Agent. The performance test is divided into two parts. The first part

concentrates on system measurements like CPU or memory consumption. The second part looks deeper into

the procedures going on within the Agent, where it is measured how long a certain method needs to be

executed. These measurements were taken using the Monitoring tool inspectIT6 from NovaTec GmbH. As some

of our team members are working in the inspectIT development team, it was possible to use this tool.

8.1 SYSTEM MEASUREMENTS

8.1.1 CPU

This section shows the CPU work load of the JVM during different phases.

8.1.1.1 CPU LOAD WHEN IDLING

Normal CPU load where the Agent is just looking at available projects.

Illustration 24: CPU load when idling

6 http://www.inspectit.eu/

 Software Project WS09/10

Performance Measurements 54

8.1.1.2 CPU LOAD DURING A NEGOTIATION WITH 30 JOBS

As shown in the picture there is only little load when a negotiation with 30 jobs is performed.

Illustration 25: CPU load during a negotiation with 30 jobs

 Software Project WS09/10

Performance Measurements 55

8.1.1.3 CPU LOAD DURING A NEGOTIATION WITH 120 JOBS

Like before, there is only little load when a negotiation with 120 jobs is performed, because the most work is

done on the Mediator.

Illustration 26: CPU load during a negotiation with 120 jobs

 Software Project WS09/10

Performance Measurements 56

8.1.2 CLASS LOADING

This section shows how many classes were loaded/unloaded during all phases of the Agent. As shown in the

below picture there were around 1600 initially loaded classes. This number has grown during the different

phases of the Agent, because the JVM loads needed classes on demand. Eventually there were around 2500

loaded classes which is a normal behavior.

Illustration 27: Class loading

 Software Project WS09/10

Performance Measurements 57

8.1.3 MEMORY

This section shows some memory work load of the JVM during different phases.

8.1.3.1 MEMORY LOAD WHEN IDLING

The below picture shows the memory consumption when the Agent was idle and doing nothing.

Illustration 28: Memory load when idle

 Software Project WS09/10

Performance Measurements 58

8.1.3.2 MEMORY LOAD DURING A NEGOTIATION

The consumption of the memory grows and shrinks when the Agent is within a negotiation, but this behavior is

constant no matter whether a project with 30 or 120 jobs is selected.

Illustration 29: Memory load during a negotiation

 Software Project WS09/10

Performance Measurements 59

8.1.4 THREADS

This section shows how many Threads where started during different phases. As there were not much more

Threads launched in the negotiation phase, this section has just one overview picture.

Illustration 30: Overview over threads

 Software Project WS09/10

Performance Measurements 60

8.1.5 SYSTEM INFORMATION

This section shows some general information about the JVM where the Agent is running in.

Illustration 31: General system information

 Software Project WS09/10

Performance Measurements 61

8.2 TIMER MEASUREMENTS

This section contains some Timer measurements from different methods that were called. The Timer gives a

feeling how long it takes to execute a specific method. Therefore it is possible to discover methods that have

long execution times which can later be re-factored and improved. As our focus was to also have a high-

performance implementation of the Agent, there were fortunately no methods discovered which have a long

execution time.

8.2.1 JOINING A PROJECT

The below picture shows that just one method is called when a project is joined.

Illustration 32: Joining a project

 Software Project WS09/10

Performance Measurements 62

8.2.2 RETRIEVING PROJECT CHANGES

To be able to retrieve changes in all the projects, each Agent asks the Mediator every five seconds for changes.

In this case a change is when for example an Agent joins a project. As shown in the below picture the execution

time of this method is in average around 90 milliseconds. This is because of the network delay.

Illustration 33: Retrieving project changes

 Software Project WS09/10

Performance Measurements 63

8.2.3 UPDATING THE PROJECTVIEW

When there are changes, the ProjectView needs to be updated and the corresponding components need to be

redrawn. The average is about 5 milliseconds which is a very good value and is also the benefit of SWT as the

selected UI framework.

Illustration 34: Updating the project view

 Software Project WS09/10

Performance Measurements 64

8.2.4 UPDATING THE NEGOTIATIONVIEW

The behavior of the update mechanism of the NegotiationView is like that of the ProjectView. The average is

about 5 milliseconds for redrawing corresponding components.

Illustration 35: Updating the NegotiationView

 Software Project WS09/10

Performance Measurements 65

8.2.5 RETRIEVING PROPOSALS FOR 30 JOBS

During a negotiation, each Agents asks the Mediator for new proposals. Depending on the size of the project

the Agent is participating in, this retrieval can have a higher execution time, because the proposals are

generated on the Mediator and then sent over to the Agent. The below picture shows the retrieval of proposals

for a project with 30 jobs. The average retrieve time is about 3 seconds for each round of a negotiation.

Illustration 36: Retrieving proposals for 30 jobs

 Software Project WS09/10

Performance Measurements 66

8.2.6 RETRIEVING PROPOSALS FOR 120 JOBS

Like described in the previous section, the retrieval of new proposals strongly depends on the size of the

project. The below picture shows that the average time is about 5 seconds for retrieving the proposals for a

project with 120 jobs.

Illustration 37: Retrieving proposals for 120 jobs

 Software Project WS09/10

Performance Measurements 67

8.2.7 SENDING THE EVALUATED POINTS – 30 JOBS

When an Agent retrieves new proposals, he performs the voting based on the selected voting algorithm and

sends the evaluated points to the Mediator. The case for a project with 30 jobs is shown in the below picture.

Illustration 38: Sending the evaluated points - 30 jobs

 Software Project WS09/10

Performance Measurements 68

8.2.8 SENDING THE EVALUATED POINTS – 120 JOBS

The below picture shows the sending of the evaluated points for a project with 120 jobs. The average times for

sending the evaluated points are nearly equal to a project with 30 jobs.

Illustration 39: Sending the evaluated points - 120 jobs

 Software Project WS09/10

Conclusion 69

9 CONCLUSION

The project team has shown that it has been able to create a solution to handle the multi-agent project-

scheduling problem in a distributed system. Additionally, the team was able to utilize ant-based algorithms for

the evaluation of the solutions.

This solution approach was unique in its way and opened the door for further studies in this area.

Due to restrictions in time and resources, we have only been able to implement a limited number of

algorithms. The code-design was chosen in a way that it is easy to add new voting algorithms for the agents

without huge modifications of the source code.

Also it is possible to enhance the code to support different ant-algorithm approaches.

The update of the pheromone matrix can be modified to evaluate the effects of modifications on the results

and to therefore improve the solution quality.

Furthermore, the project could be enhanced to support more than two agents negotiating at the same time.

It is very important to know that our software solution will have to be modified if it should be used in a

productive, real-time environment. If our solution should be used in a commercial environment, additional

features would have to be taken into account. These include for example authentication, secure channels of

transportation and a service concept.

Every team member has enjoyed working on the project and learned a lot by doing so. For the team members

it has been a rich experience working in a team of this size and programming on code collaboratively. Everyone

has been able to enhance their experience in the field of programming.

The team was very motivated and showed this by performing weekly team meetings, regular meetings with the

professor and by sticking to the project plan at all times.

The project has been a success, as for the whole team and for the team members themselves.

 Software Project WS09/10

Appendix 70

10 APPENDIX

10.1 SOURCES

1. Homberger. AntsIntroduction. Blackboard HFT : s.n.

2. Merkle, D., Middendorf, M. and Schmeck, H. Ant colony optimization for resource-constrained project

scheduling. EC. 2002, pp. 333-346.

3. Cognitzer, V. and Sandholm, T. Communication complexity of common voting rules. EC. 2005, pp. 78-87.

	Introduction
	Problem
	Cash Value
	Resource Constraints
	Problem Instances by Fink

	Goals
	Approach
	Explanation pheromone matrix

	Project Team

	Requirements
	Business Requirements
	Feasible Schedule
	Solution Quality
	Graphical User Interface
	Benchmarking capabilities

	Technological Requirements
	Distributed System
	Platform
	Hardware Requirements

	Solution Concept and Draft
	Business Solution Elements
	Feasible Schedule
	Solution Quality
	Graphical User Interface
	Benchmarking Capabilities

	Technological Solution Elements
	Distributed System
	Platform
	Hardware
	Web Service Framework

	Team Project Plan

	Architecture
	Software Architecture
	UML Class Diagrams
	Agent
	Mediator
	Common Layer

	UML Sequence Diagram

	System Architecture

	Development Environment
	Tools and Versions of used software
	Operating System
	Project Management
	Version Control
	Continuous Integration
	Automated builds / Automated Testing
	Application Server

	Enabling the Web Access

	Prototype
	Infrastructure
	Algorithms
	General Ant Algorithm
	Proposal Generation
	Serial Schedule Generation Scheme SSGS

	Voting Algorithms
	Scoring Rule
	Borda
	Plurality
	Approval
	Copeland
	Conclusion

	Ant Colony Optimization AOC – ADaptation Rule
	Improven pheromone matrix update
	Pheromone matrix example

	Distributed System
	Architecture of the Distributed System
	Description of the service methods
	Description of the mediator components
	Description of the agent components

	Agent
	Specification / Design
	Implementation
	Performance
	Look and Feel (appearance)
	Platform Independency
	Experience
	Outcome
	Additional Toolkits
	Chart Toolkits
	JFace

	GUI Explaination
	Mediator Connection
	Project Selection
	Negotiation Screen
	Cash Value Chart
	Resource Capacity Plan by allocation
	Resource Capacity Plan by jobs
	Statistics / Information

	Result View

	Results
	Problem J302 approach 1
	Problem J302 approach 2
	Problem J602
	Problem X35 Approach 1
	Problem X35 Approach 2

	Performance Measurements
	System Measurements
	CPU
	CPU load when idling
	CPU load during a negotiation with 30 jobs
	CPU load during a negotiation with 120 jobs

	Class Loading
	Memory
	Memory load when idling
	Memory load during a negotiation

	Threads
	System Information

	Timer Measurements
	Joining a project
	Retrieving project changes
	Updating the ProjectView
	Updating the NegotiationView
	Retrieving proposals for 30 jobs
	Retrieving proposals for 120 jobs
	Sending the evaluated points – 30 jobs
	Sending the evaluated points – 120 jobs

	Conclusion
	Appendix
	Sources

